Advertisement

Consistent and Specific Multi-view Relative-Transform Classification

  • Siyuan Ping
  • Long Zhang
  • Xing Wang
  • Guoxian YuEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1072)

Abstract

In many practical problems, the same objects can be described in many different ways or from different angles. These multiple descriptions constitute multiple views of objects. Multi-view classification methods try to exploit information from all views to improve the classification performance and reduce the effect of noises. However, how to efficiently exploit the consistency and specificity in multiple views remains a challenge. In addition, it is also worth to explore the processing results of multi-view data more inline with human cognition. For this reason, we propose a new multi-view classification algorithm, Consistent and Specific Multi-View Relative-transform Classification (CSMRtC). CSMRtC firstly explores the underlying subspace structure of different views exhaustively, to evacuate consistency and specificity of multi-view data. Next, these data matrices are processed using the relative transform technique. As for the consistency and specificity, consistent matrix stores the shared information of multiple data matrices, specificity captures the characteristic of each view. Then, we use the relative transformations to transform data from raw space to relative spaces, to achieve the purpose of suppress noise in the data and improve the distinction between the data. Comprehensive evaluations with several state-of-the-art competitors demonstrate the efficiency and the superiority of the proposed method.

Keywords

Multi-view learning Classification Relative transformation 

References

  1. 1.
    Wen, G.: Relative transformation-based neighborhood optimization for isometric embedding 72(4–6), 1205–1213 (2009)Google Scholar
  2. 2.
    Bazzani, L., Murino, V.: A unifying framework in vector-valued reproducing kernel Hilbert spaces for manifold regularization and co-regularized multi-view learning (2014)Google Scholar
  3. 3.
    Bekker, A., Shalhon, M., Greenspan, H., Goldberger, J.: Multi-view probabilistic classification of breast microcalcifications. IEEE Trans. Med. Imaging 35(2), 645 (2016)CrossRefGoogle Scholar
  4. 4.
    Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Conference on Computational Learning Theory (1998)Google Scholar
  5. 5.
    Cao, X., Zhang, C., Fu, H., Si, L., Hua, Z.: Diversity-induced multi-view subspace clustering. In: Computer Vision & Pattern Recognition (2015)Google Scholar
  6. 6.
    Choi, H., Choi, S.: Robust kernel isomap. Pattern Recogn. 40(3), 853–862 (2007)CrossRefGoogle Scholar
  7. 7.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision & Pattern Recognition (2005)Google Scholar
  8. 8.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification (2001)Google Scholar
  9. 9.
    Fan, R.E., Chen, P.H., Lin, C.J., Joachims, T.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6(4), 1889–1918 (2005)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Guo, Y.: Convex subspace representation learning from multi-view data. In: Twenty-Seventh AAAI Conference on Artificial Intelligence (2013)Google Scholar
  11. 11.
    Ioannidis, A., Chasanis, V., Likas, A.: Weighted multi-view key-frame extraction. Pattern Recogn. Lett. 72, 52–61 (2016)CrossRefGoogle Scholar
  12. 12.
    Jing, X.Y., Qian, L., Fei, W., Xu, B., Zhu, Y., Chen, S.: Web page classification based on uncorrelated semi-supervised intra-view and inter-view manifold discriminant feature extraction. In: International Conference on Artificial Intelligence (2015)Google Scholar
  13. 13.
    Kolenda, T., Hansen, L.K., Larsen, J., Winther, O.: Independent component analysis for understanding multimedia content. In: IEEE Workshop on Neural Networks for Signal Processing (2002)Google Scholar
  14. 14.
    Kumar, A., Iii, H.D.: A co-training approach for multi-view spectral clustering. In: International Conference on Machine Learning (2011)Google Scholar
  15. 15.
    Kumar, A., Rai, P., Daum, H.: Co-regularized multi-view spectral clustering. In: International Conference on Neural Information Processing Systems (2011)Google Scholar
  16. 16.
    Lades, M., et al.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42(3), 300–311 (1993)CrossRefGoogle Scholar
  17. 17.
    Li, G., Chang, K., Hoi, S.C.H.: Multiview semi-supervised learning with consensus. IEEE Trans. Knowl. Data Eng. 24(11), 2040–2051 (2012)CrossRefGoogle Scholar
  18. 18.
    Lin, Z., Chen, M., Yi, M.: The augmented lagrange multiplier method for exactrecovery of corrupted low-rank matrices. Eprint Arxiv 9 (2010)Google Scholar
  19. 19.
    Luss, R., D’Aspremont, A.: Support vector machine classification with indefinite kernels. Math. Program. Comput. 1(2–3), 97–118 (2008)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Mayo, M., Frank, E.: Experiments with multi-view multi-instance learning for supervised image classification. In: Image and Vision Computing New Zealand (2011)Google Scholar
  21. 21.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  22. 22.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRefGoogle Scholar
  23. 23.
    Rongali, S., Chandar, A.P.S., Ravindran, B.: From multiple views to single view: a neural network approach (2015)Google Scholar
  24. 24.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  25. 25.
    Zilca, R.D., Bistritz, Y.: Feature concatenation for speaker identification. In: European Signal Processing Conference (2010)Google Scholar
  26. 26.
    Tan, Q., Yu, G., Wang, J., Carlotta, D.: Multi-view weak-label learning based on matrix completion. In: Data Mining, pp. 450–458 (2018)CrossRefGoogle Scholar
  27. 27.
    Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  28. 28.
    Wang, Q., Lv, H., Yue, J., Mitchell, E.: Supervised multiview learning based on simultaneous learning of multiview intact and single view classifier. Neural Comput. Appl. 28(8), 2293–2301 (2017)CrossRefGoogle Scholar
  29. 29.
    Wozniak, M., Jackowski, K.: Some remarks on chosen methods of classifier fusion based on weighted voting. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI), vol. 5572, pp. 541–548. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02319-4_65CrossRefGoogle Scholar
  30. 30.
    Wu, F., Jing, X.Y., You, X., Yue, D., Hu, R., Yang, J.Y.: Multi-view low-rank dictionary learning for image classification. Pattern Recogn. 50(C), 143–154 (2016)CrossRefGoogle Scholar
  31. 31.
    Wu, J., Rehg, J.M.: CENTRIST: a visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501 (2010)Google Scholar
  32. 32.
    Xu, C., Tao, D., Xu, C.: Multi-view learning with incomplete views. IEEE Trans. Image Process. 24(12), 5812–5825 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yang, Y., Chao, L., Li, X., Bo, L., Huan, J.: Automatic social circle detection using multi-view clustering. In: ACM International Conference on Information & Knowledge Management (2014)Google Scholar
  34. 34.
    Yu, G., Zhu, H., Domeniconi, C.: Predicting protein functions using incomplete hierarchical labels. BMC Bioinform. 16(1), 1 (2015)CrossRefGoogle Scholar
  35. 35.
    Zhang, C., Fu, H., Si, L., Liu, G., Cao, X.: Low-rank tensor constrained multiview subspace clustering. In: IEEE International Conference on Computer Vision (2015)Google Scholar
  36. 36.
    Zhu, Y., Jing, X., Wang, Q., Wu, F., Feng, H., Wu, S.: Multi-view sparse embedding analysis based image feature extraction and classification. In: Zha, H., Chen, X., Wang, L., Miao, Q. (eds.) CCCV 2015. CCIS, vol. 547, pp. 51–60. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48570-5_6CrossRefGoogle Scholar
  37. 37.
    Zhuangabc, F., Heaa, Q.: Multi-view learning via probabilistic latent semantic analysis. Inf. Sci. 199(15), 20–30 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Computer and Information SciencesSouthwest UniversityChongqingChina

Personalised recommendations