Advertisement

A Deep Learning Paradigm for Automated Face Attendance

  • Rahul Kumar Gupta
  • Shreeja Lakhlani
  • Zahabiya Khedawala
  • Vishal Chudasama
  • Kishor P. UplaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1019)

Abstract

In this paper, we propose an end-to-end automatic face attendance system using Convolutional Neural Networks (CNNs). Attendance of a student plays an important role in any academic organization. Manual attendance system is very time consuming and tedious. On the other hand, automatic attendance system through face recognition using CCTV camera can be fast and can reduce the man-power involved in that process. Here, we have pipelined one of the best existing architectures such as: (i) Single Image Super-Resolution Network (SRNet) for image super-resolution, (ii) MTCNN for face detection and (iii) FaceNet for face recognition in order to come up with a novel idea of marking attendance. Due to poor video quality of CCTV camera, it becomes difficult to detect and recognize faces accurately and this may reduce the attendance accuracy. To overcome this limitation, we propose a CNN framework called SRNet which super-resolves a given low resolution (LR) image and also increases the face recognition accuracy. We make use of five different datasets i.e. RAISE and DIV2K for SRNet, VGGface2 for FaceNet, LFW and our own dataset for testing and validation purpose. The proposed face attendance system displays a sheet which consists of a list of absent and present persons and the overall attendance record. Our experimental results show that the proposed approach outperforms other existing face attendance approaches.

Keywords

Deep learning Convolutional Neural Networks SRNet MTCNN FaceNet Face attendance 

Notes

Acknowledgement

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research.

References

  1. 1.
    Arsenovic, M., Sladojevic, S., Anderla, A., Stefanovic, D.: Facetime–deep learning based face recognition attendance system. In: IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY) 2017, pp. 000053–000058. IEEE (2017)Google Scholar
  2. 2.
    Barron, J.T.: A more general robust loss function. arXiv preprint arXiv:1701.03077 (2017)
  3. 3.
    Chintalapati, S., Raghunadh, M.: Automated attendance management system based on face recognition algorithms. In: 2013 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), pp. 1–5. IEEE (2013)Google Scholar
  4. 4.
    Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10593-2_13CrossRefGoogle Scholar
  5. 5.
    Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)CrossRefGoogle Scholar
  6. 6.
    Fu, R., Wang, D., Li, D., Luo, Z.: University classroom attendance based on deep learning. In: 2017 10th International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 128–131. IEEE (2017)Google Scholar
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  8. 8.
    Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)Google Scholar
  9. 9.
    Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)Google Scholar
  10. 10.
    Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)Google Scholar
  11. 11.
    Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  12. 12.
    Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Fast and accurate image super-resolution with deep laplacian pyramid networks. arXiv preprint arXiv:1710.01992 (2017)
  13. 13.
    Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802 (2016)
  14. 14.
    Li, H., Lin, Z., Shen, X., Brandt, J., Hua, G.: A convolutional neural network cascade for face detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5325–5334 (2015)Google Scholar
  15. 15.
    Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, vol. 1, p. 3 (2017)Google Scholar
  16. 16.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  17. 17.
    Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1(10), e3 (2016)CrossRefGoogle Scholar
  18. 18.
    Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010).  https://doi.org/10.1109/TKDE.2009.191CrossRefGoogle Scholar
  19. 19.
    Rathod, H., Ware, Y., Sane, S., Raulo, S., Pakhare, V., Rizvi, I.A.: Automated attendance system using machine learning approach. In: 2017 International Conference on Nascent Technologies in Engineering (ICNTE), pp. 1–5. IEEE (2017)Google Scholar
  20. 20.
    Sajjadi, M.S., Schölkopf, B., Hirsch, M.: Enhancenet: single image super-resolution through automated texture synthesis. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4501–4510. IEEE (2017)Google Scholar
  21. 21.
    Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)Google Scholar
  22. 22.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  23. 23.
    Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996 (2014)Google Scholar
  24. 24.
    Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI, vol. 4, p. 12 (2017)Google Scholar
  25. 25.
    Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1 (2017)Google Scholar
  26. 26.
    Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)Google Scholar
  27. 27.
    Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)CrossRefGoogle Scholar
  28. 28.
    Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46478-7_31CrossRefGoogle Scholar
  29. 29.
    Yang, S., Luo, P., Loy, C.C., Tang, X.: From facial parts responses to face detection: a deep learning approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3676–3684 (2015)Google Scholar
  30. 30.
    Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rahul Kumar Gupta
    • 1
  • Shreeja Lakhlani
    • 1
  • Zahabiya Khedawala
    • 1
  • Vishal Chudasama
    • 1
  • Kishor P. Upla
    • 1
    Email author
  1. 1.Sardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations