Advertisement

AECNN: Autoencoder with Convolutional Neural Network for Hyperspectral Image Classification

  • Heena Patel
  • Kishor P. UplaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1019)

Abstract

This paper addresses an approach for classification of hyperspectral imagery (HSI). In remote sensing, the HSI sensor acquires hundreds of images with very narrow but continuous spectral width in visible and near-infrared regions of the electromagnetic (EM) spectrum. Due to the nature of data acquisition with contiguous bands, the HS images are very useful in classification and/or the identification of materials present in the captured geographical area. However, the low spatial resolution and large volume of HS images make the classification of those images as a challenging task. In the proposed approach, we use an autoencoder with convolutional neural network (AECNN) for classification of HS image. Pre-processing procedure with autoencoder leads to obtain optimized weights in the initial layer of CNN model. Moreover, features are enhanced in the HS images by utilizing the autoencoder. The CNN is used for efficient extraction of the features and same is also utilised for the classification of HS data. The potential of the proposed approach has been verified by conducting the experiments on three recent datasets. The experimental results are compared with the results obtained in the geoscience and remote sensing society (GRSS) Image Fusion Contest-2018 held at IEEE International Geoscience and Remote Sensing Symposium (IGARSS)-2018 and other existing frameworks for HSI classification. The testing accuracy of classification for the proposed approach is better than that of the other existing deep learning based methods.

Keywords

Autoencoder CNN Feature extraction Hyperspectral classification 

References

  1. 1.
    Aptoula, E., Ozdemir, M.C., Yanikoglu, B.: Deep learning with attribute profiles for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 13(12), 1970–1974 (2016)CrossRefGoogle Scholar
  2. 2.
    Benediktsson, J.A., Palmason, J.A., Sveinsson, J.R.: Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 43(3), 480–491 (2005)CrossRefGoogle Scholar
  3. 3.
    Camps-Valls, G., Tuia, D., Bruzzone, L., Benediktsson, J.A.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31(1), 45–54 (2014)CrossRefGoogle Scholar
  4. 4.
    Chen, X., Xiang, S., Liu, C.L., Pan, C.H.: Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci. Remote Sens. Lett 11(10), 1797–1801 (2014)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 7(6), 2094–2107 (2014)CrossRefGoogle Scholar
  8. 8.
    Ding, C., Xu, C., Tao, D.: Multi-task pose-invariant face recognition. IEEE Trans. Image Process. 24(3), 980–993 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ham, J., Chen, Y., Crawford, M.M., Ghosh, J.: Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(3), 492–501 (2005)CrossRefGoogle Scholar
  10. 10.
    He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)Google Scholar
  11. 11.
    Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014)Google Scholar
  12. 12.
    Kingma, D.P., Ba, J.L.: Adam: A method for stochastic optimization. In: Proceedings of 3rd International Conference for Learning Representations, pp. 1–15 (2015) Google Scholar
  13. 13.
    Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)CrossRefGoogle Scholar
  14. 14.
    Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 50(3), 809–823 (2012)CrossRefGoogle Scholar
  15. 15.
    Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image classification using soft sparse multinomial logistic regression. IEEE Geosci. Remote Sens. Lett. 10(2), 318–322 (2013)CrossRefGoogle Scholar
  16. 16.
    Li, W., Wu, G., Zhang, F., Du, Q.: Hyperspectral image classification using deep pixel-pair features. IEEE Trans. Geosci. Remote Sens. 55(2), 844–853 (2017)CrossRefGoogle Scholar
  17. 17.
    Liu, W., Mei, T., Zhang, Y., Che, C., Luo, J.: Multi-task deep visual-semantic embedding for video thumbnail selection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3707–3715 (2015)Google Scholar
  18. 18.
    Luus, F.P., Salmon, B.P., Van den Bergh, F., Maharaj, B.T.J.: Multiview deep learning for land-use classification. IEEE Geosci. Remote Sens. Lett. 12(12), 2448–2452 (2015)CrossRefGoogle Scholar
  19. 19.
    Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3 (2013)Google Scholar
  20. 20.
    Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification through convolutional neural networks. In: 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 4959–4962. IEEE (2015)Google Scholar
  21. 21.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)Google Scholar
  22. 22.
    Pal, M., Foody, G.M.: Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 48(5), 2297–2307 (2010)CrossRefGoogle Scholar
  23. 23.
    Parkhi, O.M., Vedaldi, A., Zisserman, A., et al.: Deep face recognition. In: BMVC, vol. 1, p. 6 (2015)Google Scholar
  24. 24.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)CrossRefGoogle Scholar
  25. 25.
    Windrim, L., Melkumyan, A., Murphy, R.J., Chlingaryan, A., Ramakrishnan, R.: Pretraining for hyperspectral convolutional neural network classification. IEEE Trans. Geosci. Remote Sens. 56, 2798–2810 (2018)CrossRefGoogle Scholar
  26. 26.
    Xu, X., Li, W., Ran, Q., Du, Q., Gao, L., Zhang, B.: Multisource remote sensing data classification based on convolutional neural network. IEEE Trans. Geosci. Remote Sens. 56(2), 937–949 (2018)CrossRefGoogle Scholar
  27. 27.
    Yan, D., Chu, Y., Li, L., Liu, D.: Hyperspectral remote sensing image classification with information discriminative extreme learning machine. Multimed. Tools Appl. 77(5), 5803–5818 (2018)CrossRefGoogle Scholar
  28. 28.
    Yu, S., Jia, S., Xu, C.: Convolutional neural networks for hyperspectral image classification. Neurocomputing 219, 88–98 (2017)CrossRefGoogle Scholar
  29. 29.
    Yue, J., Zhao, W., Mao, S., Liu, H.: Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 6(6), 468–477 (2015)CrossRefGoogle Scholar
  30. 30.
    Zhao, W., Du, S.: Spectral-spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach. IEEE Trans. Geosci. Remote. Sens. 54(8), 4544–4554 (2016)CrossRefGoogle Scholar
  31. 31.
    Zhao, W., Guo, Z., Yue, J., Zhang, X., Luo, L.: On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. Int. J. Remote Sens. 36(13), 3368–3379 (2015)CrossRefGoogle Scholar
  32. 32.
    Zhu, C., Peng, Y.: A boosted multi-task model for pedestrian detection with occlusion handling. IEEE Trans. Image Process. 24(12), 5619–5629 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Sardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations