Advertisement

Exact Traveling Wave Solutions and Bifurcation Analysis for Time Fractional Dual Power Zakharov-Kuznetsov-Burgers Equation

  • Amiya DasEmail author
Conference paper
  • 11 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 308)

Abstract

In this paper, we introduce the time fractional dual power Zakharov-Kuznetsov-Burgers equation in the sense of modified Riemann-Liouville derivative. We briefly describe one direct ansatz method namely \((G'/G)\)-expansion method in adherence of fractional complex transformation and applying this method exploit miscellaneous exact traveling wave solutions including solitary wave, kink-type wave, breaking wave and periodic wave solutions of the equation. Next we investigate the dynamical behavior, bifurcations and phase portrait analysis of the exact traveling wave solutions of the system in presence and absence of damping effect. Moreover, we demonstrate the exceptional features of the traveling wave solutions and phase portraits of planar dynamical system via interesting figures.

Keywords

Fractional differential equation Time fractional dual power ZK-Burgers equation Traveling wave solution \((G'/G)\)-expansion method Bifurcation analysis 

References

  1. 1.
    Oldham, K., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)zbMATHGoogle Scholar
  2. 2.
    Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  3. 3.
    Kilbas, A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  4. 4.
    Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econometrics 73, 5–59 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59, 1326–1336 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Zhou, Y., Jiao, F., Li, J.: Existence and uniqueness for p-type fractional neutral differential equations. Nonlinear Anal. 71, 2724–2733 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Galeone, L., Garrappa, R.: Explicit methods for fractional differential equations and their stability properties. J. Comput. Appl. Math. 228, 548–560 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Trigeassou, J.C., Maamri, N., Sabatier, J., Oustaloup, A.: A Lyapunov approach to the stability of fractional differential equations. Signal Process. 91, 437–445 (2011)zbMATHCrossRefGoogle Scholar
  10. 10.
    Jumarie, G.: Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Wang, M.L., Li, X.Z., Zheng, J.L.: The \((G^{\prime }/G)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417–423 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zheng, B.: \((G^{\prime }/G)\)-Expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. (Beijing, China) 58, 623–630 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hosseini, K., Ayati, Z.: Exact solutions of space-time fractional EW and modified EW equations using Kudryashov method. Nonlinear Sci. Lett. A 7(2), 58–66 (2016)Google Scholar
  14. 14.
    Zheng, B.: Exp-function method for solving fractional partial differential equations. Sci. World J. 2013, 465723 (2013)Google Scholar
  15. 15.
    Bekir, A., Guner, Ö., Ünsal, Ö.: The first integral method for exact solutions of nonlinear fractional differential equations. J. Comput. Nonlinear Dyn. 10(2), 021020 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhou, Y., Wang, M., Wang, Y.: Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys. Lett. A 308, 31–36 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Wang, M., Zhou, Y.: The periodic wave solutions for the Klein-Gordon-Schrödinger equations. Phys. Lett. A 318, 84–92 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Rizvi, S.T.R., Ali, K.: Jacobian elliptic periodic traveling wave solutions in the negative-index materials. Nonlinear Dyn. 87, 1967–1972 (2017)CrossRefGoogle Scholar
  19. 19.
    Hasegawa, A.: Plasma Instabilities and Nonlinear Effects. Springer, Berlin (1975)CrossRefGoogle Scholar
  20. 20.
    Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett 78, 448–451 (1997)CrossRefGoogle Scholar
  21. 21.
    Gray, P., Scott, S.: Chemical Oscillations and Instabilities. Clarendon, Oxford (1990)Google Scholar
  22. 22.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, Cambridge (1991)zbMATHCrossRefGoogle Scholar
  23. 23.
    Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Dordrecht (1994)zbMATHCrossRefGoogle Scholar
  24. 24.
    Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1995)zbMATHGoogle Scholar
  25. 25.
    Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)zbMATHCrossRefGoogle Scholar
  26. 26.
    Yu, J., Lou, S.Y.: Deformation and \((3 + 1)\)-dimensional integrable model. Sci. China Ser. A 43, 655–660 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lou, S.Y.: Searching for higher dimensional integrable models from lower ones via Painlev\(\acute{e}\) analysis. Phys. Rev. Lett. 80, 5027–5031 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    El-Wakil, S.A., Abdou, M.A., Elhanbaly, A.: New solitons and periodic wave solutions for nonlinear evolution equations. Phys. Lett. A 353, 40–7 (2006)CrossRefGoogle Scholar
  29. 29.
    Jiang, B., Liu, Y., Zhang, J., et al.: Bifurcations and some new traveling wave solutions for the CH-\(\gamma \) equation. Appl. Math. Comput. 228(1), 220–233 (2014)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ganguly, A., Das, A.: Explicit solutions and stability analysis of the \((2 + 1)\) dimensional KP-BBM equation with dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 25, 102–117 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Das, A., Ganguly, A.: Existence and stability of dispersive solutions to the Kadomtsev-Petviashvili equation in the presence of dispersion effect. Commun. Nonlin. Sci. Numer. Simulat 48, 326–339 (2017)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhou, Y., Peng, L.: Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Comput. Math. Appl. 73, 1016–1027 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Unsal, O., Guner, O., Bekir, A.: Analytical approach for space-time fractional Klein-Gordon equation. Optik 135, 337–345 (2017)CrossRefGoogle Scholar
  34. 34.
    Hongsit, N., Allen, M.A., Rowlands, G.: Growth rate of transverse instabilities of solitary pulse solutions to a family of modified Zakharov-Kuznetsov equations. Phys. Lett. A 372(14), 2420 (2008)zbMATHCrossRefGoogle Scholar
  35. 35.
    Wazwaz, A.M.: The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 13(6), 1039–47 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Biswas, A., Zerrad, E.: \(1\)-soliton solution of the Zakharov-Kuznetsov equation with dual-power law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 14, 3574–3577 (2009)zbMATHCrossRefGoogle Scholar
  37. 37.
    Yan, Z.L., Liu, X.Q.: Symmetry reductions and explicit solutions for a generalized Zakharov-Kuznetsov equation. Commun. Theor. Phys. (Beijing, China) 45, 29–32 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Ferdousi, M., Miah, M.R., Sultana, S., Mamun, A.A.: Dust-acoustic shock waves in an electron depleted nonextensive dusty plasmas. Astrophys. Space Sci. 360, 43 (2015)CrossRefGoogle Scholar
  39. 39.
    Jannat, N., Ferdousi, M., Mamun, A.A.: Ion-acoustic shock waves in nonextensive multi-ion plasmas. Commun. Theor. Phys. 64, 479–484 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Ema, S.A., Ferdousi, M., Sultana, S., Mamun, A.A.: Dust-ion-acoustic shock waves in nonextensive dusty multi-ion plasmas. Eur. Phys. J. Plus 130, 46 (2015)CrossRefGoogle Scholar
  41. 41.
    Uddin, M.J., Alam, M.S., Mamun, A.A.: Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas. Phys. Plasmas 22, 062111 (2015)zbMATHCrossRefGoogle Scholar
  42. 42.
    Li, J., Chen, G.: Bifurcations of travelling wave solutions for four classes of nonlinear wave equations. Int. J. Bifurcation Chaos 15, 3973 (2005)zbMATHCrossRefGoogle Scholar
  43. 43.
    Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of MathematicsKazi Nazrul UniversityAsansolIndia

Personalised recommendations