Advertisement

The Role of Adaptation in Plankton System with Beddington-DeAngelis Type Functional Response

  • Nilesh Kumar ThakurEmail author
  • Archana Ojha
  • S. K. Tiwari
Conference paper
  • 19 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 308)

Abstract

In this paper two interacting species in presence of adaptation (dormancy of the predators such as resting eggs) has been discussed. The dormant stage is an equipment to survive in harsh environment. We have discussed the stability analysis of system without diffusion and in presence of diffusion. Our numerical investigation reveals that above the critical value of interference among the zooplankton the system become stable. Spatiotemporal pattern shows a transient complex spatiotemporal pattern by increasing the time and space.

Keywords

Adaptation Dormancy Plankton Spatiotemporal pattern 

Notes

Acknowledgements

This research work is supported by Chhattisgarh Council of Science and Technology, India under grant no. 2238/CCOST/MRP/2015 to the corresponding author (Nilesh Kumar Thakur).

References

  1. 1.
    Harper, J.L.: Population Biology of Plants. Academic Press, London (1977)Google Scholar
  2. 2.
    Wiggins, G.B., Mackay, R.J., Smith, I.M.: Evolutionary and ecological strategies of animals in annual temporary pools. Arch. Hydrobiol. Suppl. 58, 97–206 (1980)Google Scholar
  3. 3.
    Henis, Y.: Survival and Dormancy of Microorganisms. Wiley, Hoboken (1987)Google Scholar
  4. 4.
    Piltz, S.H., Porter, M.A., Maini, P.K.: Prey switching with a linear performance trade-off. SIAM J. Appl. Dyn. Syst. 13, 658–682 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    De Stasio Jr., B.T.: The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnol. Oceanogr. 35, 1079–1090 (1990)CrossRefGoogle Scholar
  6. 6.
    Hutchinson, G.E.: A Treatise on Limnology. Wiley, Hoboken (1967)Google Scholar
  7. 7.
    Slusarczyk, M.: Food threshold for diapause in Daphnia under the threat of fish predation. Ecology 82, 1089–1096 (2001)CrossRefGoogle Scholar
  8. 8.
    Slusarczyk, M.: Predator-induced diapauses in Daphnia. Ecology 76, 1008–1013 (1995)CrossRefGoogle Scholar
  9. 9.
    De Stasio, B.T.: The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnol. Oceanogr. 35, 1079–1090 (1990)CrossRefGoogle Scholar
  10. 10.
    Kuwamura, M., Nakazawa, T., Ogawa, T.: A minimum model of prey-predator system with dormancy of predators and the paradox of enrichment. J. Math. Biol. 58, 459–479 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kuwamura, M., Chiba, H.: Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators. Chaos 19, 043121 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Nakazawa, T., Kuwamura, M., Yamamura, N.: Implications of resting eggs of zooplankton for the paradox of enrichment. Popul. Ecol. 53, 341–350 (2011)CrossRefGoogle Scholar
  13. 13.
    Wang, J., Jiang, W.: Bifurcation and chaos of a delayed predator-prey model with dormancy of predators. Nonlinear Dyn. 69, 1541–1558 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kuwamura, M.: Turing instabilities in prey-predator systems with dormancy of predators. J. Math. Biol. 71, 125–149 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Upadhyay, R.K., Thakur, N.K., Rai, V.: Diffusion driven instabilities and spatio-temporal patterns in an aquatic predator-prey system with Beddington-DeAngelis type functional response. Int. J. Bifur. Chaos 21, 663–684 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Scheffer, M.: Ecology of Shallow Lakes. Chapman and Hall, London (1998)Google Scholar
  17. 17.
    Garvie, M.R.: Finite difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB. Bull. Math. Biol. 69, 931–956 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Nilesh Kumar Thakur
    • 1
    Email author
  • Archana Ojha
    • 1
  • S. K. Tiwari
    • 2
  1. 1.Department of MathematicsNational Institute of Technology RaipurRaipurIndia
  2. 2.Department of MathematicsBIT SindriDhanbadIndia

Personalised recommendations