Finite Element Analysis of MHD Blood Flow in Stenosed Coronary Artery with the Suspension of Nanoparticles

  • Ankita DubeyEmail author
  • B. Vasu
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 308)


The numerical study presents a two dimensional mathematical modelling and computational simulation of blood flow in a stenosed coronary artery in the presence of magnetic field. Blood flow model is considered based on second grade fluid flow and heat transfer with the suspension of nanoparticles. Vogel’s model is employed for viscosity of blood as a function of temperature. In order to complete our model, the variability in design and size of stenosis is considered. The finite element method is used to solve the transformed conservation equations numerically in conjunction of variational approach and FreeFEM++. The results show that an increase in the thermophoresis parameter (\( N_{t} \)) decreases the velocity while the increment in the Brownian motion parameter (\( N_{b} \)) increases the velocity in the whole domain. An increase in \( N_{t} \) and Brownian motion parameter (\( N_{b} \)), there is an increase in temperature values and nanoparticles concentration at the throat of the stenosis and as well as in the remaining domain. These properties changes in the domain by changing the shapes and designs of the stenosis in the domain.


Blood flow Vogel’s model Nanoparticles Magnetohydrodynamics Thermophoresis Brownian motion Coronary artery Stenosis 


A, B

Constants in viscosity function


Brownian diffusion constant


Brownian diffusion coefficient


Thermophoretic diffusion coefficient


Gravitational vector

\( \alpha_{1} ,\,\alpha_{2} \)

Material modules


Grashof Number

\( B_{0} \)

Magnetic field

\( \rho_{f} \)

Density of the base fluid

\( \rho_{p} \)

Density of the nanoparticles


Magnetohydrodynamics parameter

\( N_{b} \)

Brownian motion parameter

\( N_{t} \)

Thermophoresis parameter


Velocity vector

\( A_{1} ,\,A_{2} \)

Rilvin Erickson Tensors


Electric current density

\( \theta \)


\( \kappa \)

Thermal conductivity


Nanoparticle volume fraction

\( \lambda_{1} \)

Viscoelastic parameter


  1. 1.
    Fung, Y.C.: The flow properties of blood. In Biomechanics: Mechanical properties of living tissues, Springer, Berlin, pp. 62–98 (1981)CrossRefGoogle Scholar
  2. 2.
    Biswas, D.: Blood flow models: a comparative study. Mittal Publications, Delhi (2000)Google Scholar
  3. 3.
    Merrill, E.W.: Rheology of human blood and some speculations on its role in vascular homeostasis. In: Biomechanical Mechanisms in Vascular Homeostasis and Intravascular Thrombus (1965)Google Scholar
  4. 4.
    Taylor, M.G.: The influence of the anomalous viscosity of blood upon its oscillatory flow. Phys. Med. Biol. 3(3), 273 (1959)CrossRefGoogle Scholar
  5. 5.
    Baieth, H.E.A.: Physical parameters of blood as a non-Newtonian fluid. Int. J. Biomed. Sci. IJBS 4(4), 323 (2008)Google Scholar
  6. 6.
    Moreno, C., Bhaganagar, K.: Modeling of Stenotic coronary artery and implications of plaque morphology on blood flow. Model. Simul. Eng. 2013, 14 (2013)Google Scholar
  7. 7.
    Sauvage, E.: Patient-specific blood flow modelling. Ph.D. diss., Ph. D. Thesis, Université catholique de Louvain (2014)Google Scholar
  8. 8.
    Ali, N., Zaman, A., Sajid, M., Anwar Bég, O., Shamshuddin, M.D., Kadir, A.: Numerical simulation of time-dependent non-newtonian nanopharmacodynamic transport phenomena in a tapered overlapping stenosed artery. Nanosci. Technol. Int. J. 9(3), 247–282 (2018)CrossRefGoogle Scholar
  9. 9.
    Mathur, P., Jain, S.: Mathematical modelling of non-Newtonian blood flow through artery in the presence of stenosis. Appl. Math. Biosci. 4(1), 1–12 (2013)CrossRefGoogle Scholar
  10. 10.
    Akbar, N.S.: Non-Newtonian model study for blood flow through a tapered artery with a stenosis. Alexandria Eng. J. 55(1), 321–329 (2016)CrossRefGoogle Scholar
  11. 11.
    Godson, L., Raja, B., Mohan Lal, D., Wongwises, S.: Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14(2), 629–641 (2010)CrossRefGoogle Scholar
  12. 12.
    Li, Q., Xuan, Y.: Convective heat transfer and flow characteristics of Cu-water nanofluid. Sci. China Ser. E Technol. Sci. 45(4), 408–416 (2002)CrossRefGoogle Scholar
  13. 13.
    Pak, B.C., Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 11(2), 151–170 (1998)CrossRefGoogle Scholar
  14. 14.
    Lee, S., Choi, S.U.S., Li, S., Eastman, J.A.: Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 121(2), 280–289 (1999)CrossRefGoogle Scholar
  15. 15.
    Kumar, K.P., Paul, W., Sharma, C.P.: Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem. 46(10), 2007–2013 (2011)CrossRefGoogle Scholar
  16. 16.
    Giljohann, D.A., Seferos, D.S., Daniel, W.L., Massich, M.D., Patel, P.C., Mirkin, C.A.: Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 49(19), 3280–3294 (2010)CrossRefGoogle Scholar
  17. 17.
    Darcy, H.: The flow of fluids through porous media. Mc-Graw Hill, NewYork, NY, USA (1937)Google Scholar
  18. 18.
    Korchevskii, E.M., Marochnik, L.S.: Magneto-hydrodynamic version of movement of blood. Biophysics 10(2), 411–414 (1965)Google Scholar
  19. 19.
    Sud, V.K., Suri, P.K., Mishra, R.K.: Effect of magnetic field on oscillating blood flow in arteries. Stud. Biophys. 46(3), 163–171 (1974)Google Scholar
  20. 20.
    Hayat, T., Khan, M., Ayub, M.: Some analytical solutions for second grade fluid flows for cylindrical geometries. Math. Comput. Model. 43(1–2), 16–29 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hatami, M., Hatami, J., Ganji, D.D.: Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel. Comput. Methods Programs Biomed. 113(2), 632–641 (2014)CrossRefGoogle Scholar
  22. 22.
    Sheikholeslami, M., Gorji-Bandpy, M., Soleimani, S.: Two phase simulation of nanofluid flow and heat transfer using heatline analysis. Int. Commun. Heat Mass Transf. 47, 73–81 (2013)CrossRefGoogle Scholar
  23. 23.
    Yadav, D., Agrawal, G.S., Bhargava, R.: Thermal instability of rotating nanofluid layer. Int. J. Eng. Sci. 49(11), 1171–1184 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Aziz, A., Aziz, T.: MHD flow of a third grade fluid in a porous half space with plate suction or injection: an analytical approach. Appl. Math. Comput. 218(21), 10443–10453 (2012)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Asghar, S., Hanif, K., Hayat, T., Khalique, C.M.: MHD non-Newtonian flow due to non-coaxial rotations of an accelerated disk and a fluid at infinity. Commun. Nonlinear Sci. Numer. Simul. 12(4), 465–485 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Dunn, J.E., Fosdick, R.L.: Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. Arch. Ration. Mech. Anal. 56(3), 191–252 (1974)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Dunn, J.E., Rajagopal, K.R.: Fluids of differential type: critical review and thermodynamic analysis. Int. J. Eng. Sci. 33(5), 689–729 (1995)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ellahi, R., Raza, M., Vafai, K.: Series solutions of non-Newtonian nanofluids with Reynolds’ model and Vogel’s model by means of the homotopy analysis method. Math. Comput. Model. 55(7–8), 1876–1891 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–266 (2012)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Abraham, F., Behr, M., Heinkenschloss, M.: Shape optimization in steady blood flow: a numerical study of non-Newtonian effects. Comput. Methods Biomech. Biomed. Eng. 8(2), 127–137 (2005)CrossRefGoogle Scholar
  31. 31.
    Formaggia, L., Quarteroni, A., Veneziani, A. (eds.): Cardiovascular mathematics: modeling and simulation of the circulatory system, vol. 1. Springer Science & Business Media (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of MathematicsMNNITAllahabad, PrayagrajIndia

Personalised recommendations