Hybrid Cloud Computing Architecture Based on Open Source Technology

  • Amelec ViloriaEmail author
  • Hugo Hernández Palma
  • Wilmer Cadavid Basto
  • Alexandra Perdomo Villalobos
  • Carlos Andrés Uribe de la Cruz
  • Juan de la Hoz Hernández
  • Omar Bonerge Pineda Lezama
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1123)


The advance of technologies such as distributed computing, Internet and grid computing, have enabled Cloud Computing to become part of a new model of computing and business. Cloud Computing is transforming the traditional ways in which companies use and acquire Information Technology (IT) resources. After an initial boom in Public Cloud, companies begun to mount hybrid Clouds that offer the advantages of Cloud Computing in addition to the privacy of data they consider strategic. A hybrid Cloud solution allows the integration of both systems. Leading companies in cloud solutions have understood this evolution and begun to offer hybrid solutions. Moreover, many of these companies are taking the next step by offering solutions based on open source standards that allow a high degree of interoperability and portability.


Cloud Computing Cloud computing hybrid Open source OpenStack OpenShift 


  1. 1.
    Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsas, A.: Cloud computing—the business perspective. Decis. Support Syst. 51(1), 176–189 (2011)CrossRefGoogle Scholar
  2. 2.
    Armbrust, M., et al.: A view of cloud computing: Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  3. 3.
    Mell, P., Grance, T.: The NIST definition of cloud computing. NIST Special Publication 800–145, Gaithersburg (2011)CrossRefGoogle Scholar
  4. 4.
    Valarie Zeithaml, A., Parasuraman, A., Berry, L.L.: Total, quality Management services. Diaz de Santos, Bogota (1993)Google Scholar
  5. 5.
    Sitto, K., Presser, M.: Field Guide to Hadoop, pp. 31–33. O’REILLY, Sebastopol (2015)Google Scholar
  6. 6.
    Sosinsky, B.: Cloud Computing Bible, p. 3. Wiley, Indianapolis (2011)Google Scholar
  7. 7.
    Stanford-Clark, A., Truong, H.: MQTT-SN Specification (2015).
  8. 8.
    Lezama, O.B.P., Izquierdo, N.V., Fernández, D.P., Dorta, R.L.G., Viloria, A., Marín, L.R.: Models of multivariate regression for labor accidents in different production sectors: comparative study. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943. Springer, Cham (2018). Scholar
  9. 9.
    Izquierdo, N.V., Lezama, O.B.P., Dorta, R.G., Viloria, A., Deras, I., Hernández-Fernández, L.: Fuzzy logic applied to the performance evaluation. Honduran coffee sector case. In: Tan, Y., Shi, Y., Tang, Q. (eds.) ICSI 2018. LNCS, vol. 10942, pp. 164–173. Springer, Cham (2018). Scholar
  10. 10.
    Pineda Lezama, O., Gómez Dorta, R.: Techniques of multivariate statistical analysis: an application for the Honduran banking sector. Innovare J. Sci. Technol. 5(2), 61–75 (2017)Google Scholar
  11. 11.
    Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching - learning process through knowledge data discovery (Big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943. Springer, Cham (2018). Scholar
  12. 12.
    Zhu, J., et al.: IBM cloud computing powering a smarter planet. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 621–625. Springer, Heidelberg (2009). Scholar
  13. 13.
    Rodríguez, N., Chávez, S.B., Martin, A.E., Murazzo, M.A., Valenzuela, A.: Interoperabilidad en cloud computing. In: WICC 2011. Rosario, Argentina (2011)Google Scholar
  14. 14.
    Murazzo, M.A., Rodríguez, N.R., Villafañe, D.A., Gallardo, D.: Desarrollo de aplicaciones colaborativas para cloud computing. In: CACIC 2013. Mar del Plata, Argentina (2013)Google Scholar
  15. 15.
    Li, Q., Wang, Z.Y., Du, R.Y.: Applications integration in a hybrid cloud computing environment: modelling and platform. Enterp. Inf. Syst. 7(3), 237–271 (2013)CrossRefGoogle Scholar
  16. 16.
    Toro, E.M., Mejia, D.A., Salazar, H.: Pronóstico de ventas usando redes neuronales. Scientia et technica 10(26), 25–30 (2004)Google Scholar
  17. 17.
    Villada, F., Muñoz, N., García, E.: Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores. Información tecnológica 23(4), 11–20 (2012)CrossRefGoogle Scholar
  18. 18.
    Wen, Q., Mu, W., Sun, L., Hua, S., Zhou, Z.: Daily sales forecasting for grapes by support vector machine. In: Li, D., Chen, Y. (eds.) CCTA 2013. IAICT, vol. 420, pp. 351–360. Springer, Heidelberg (2014). Scholar
  19. 19.
    Wu, Q., Yan, H.S., Yang, H.B.: A forecasting model based support vector machine and particle swarm optimization. In: 2008 Workshop on Power Electronics and Intelligent Transportation System, pp. 218–222 (2008)Google Scholar
  20. 20.
    Ellingwood, J.: Apache vs Nginx: Practical Considerations (2015).
  21. 21.
    Gilberth, S., Lynch, N.: Perspectives on the CAP theorem. Computer 45, 30–36 (2012)CrossRefGoogle Scholar
  22. 22.
    Gouda, K., Patro, A., Dwivedi, D., Bhat, N.: Virtualization approaches in cloud computing. Int. J. Comput. Trends Technol. (IJCTT) 12, 161–166 (2014)CrossRefGoogle Scholar
  23. 23.
    Hernández, D., Mazón, B., Campoverde, A.: Cloud Computing para el Internet de las Cosas. Caso de estudio orientado a la agricultura de precisión: I Congreso Internacional de Ciencia y tecnología UTMACH 2015. HiveMQ 2015. Paradigma de mensajería PUB/SUB. ISBN 978-9942-21-149-1 (2015).
  24. 24.
    Karagiannis, V., Chatzimisios, P., Vazques, F., Zarate, J.: A survey on application layer protocols for the Internet of Things. Trans. IoT Cloud Comput. 3, 11–17 (2015)Google Scholar
  25. 25.
    Balachandran, B.M.: Development of a decision support system for hybrid and cloud computing. In: Intelligent Decision Technologies: Proceedings of the 5th KES International Conference on Intelligent Decision Technologies (KES-IDT 2013), vol. 255, p. 187. Courier Dover Publications, Junio (2013)Google Scholar
  26. 26.
    OpenStack. Introduction to OpenStack, Chapter 2. Brief Overview.
  27. 27.
    OpenStack. Introduction to OpenStack, Chapter 4. OpenStack Architecture.
  28. 28.
    Vazquez, C., Huedo, E., Montero, R., Llorente, I.: Elastic management of cluster-based services in the cloud. In: 1st workshop on Automated control for datacenters and clouds (ACDC 2009), pp. 19–24. ACM Digital Library, New York (2009)Google Scholar
  29. 29.
    Blanco, C.V., Huedo, E., Montero, R., Llorente, I.: Dynamic provision of computing resources from grid infrastructures and cloud providers. In: 2009 Workshops at the Grid and Pervasive Computing Conference, GPC 2009, pp. 113–120. IEEE Society Press, Geneva (2009)Google Scholar
  30. 30.
    Velte, T., Velte, A., Velte, T.J., Elsenpeter, R.: Cloud Computing: A Practical Approach. McGraw Hill Professional, New York (2009)zbMATHGoogle Scholar
  31. 31.
    Reese, G.: Cloud Application Architectures, O’Relly (2009)Google Scholar
  32. 32.
    Chen, W., Lu, H., Shen, L., Wang, Z., Xiao, N., Chen, D.: A novel hardware assisted full virtualization technique. In: 9th International Conference for Young Computer Scientists, pp. 1292–1297 (2008)Google Scholar
  33. 33.
    Adams, K., Agesen, O.: A comparison of software and hardware techniques for x86 virtualization. In: Twelfth International Conference on Architectural Support for Programming Languages and Operating Systems (2006)Google Scholar
  34. 34.
    VMware: Understanding full virtualization, paravirtualization and hardware assist. Reporte Técnico (2007).
  35. 35.
    Kernel Based Virtual Machine (KVM).
  36. 36.
    Nurmi, D., et al.: The eucalyptus open-source cloud-computing system. In: 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID 2009), pp. 124–131. IEEE Computer Society, Washington (2009)Google Scholar
  37. 37.
  38. 38.
    Viloria, A., Gaitan-Angulo, M.: Statistical adjustment module advanced optimizer planner and SAP generated the case of a food production company. Indian J. Sci. Technol. 9(47) (2016).
  39. 39.
    Buyya, R., Beloglazov, A., Abawajy, J.: Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges. In: 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas (2010)Google Scholar
  40. 40.
    Berl, A., et al.: Energy-efficient cloud computing. Comput. J. 53(7), 1045–1051 (2010)CrossRefGoogle Scholar
  41. 41.
    Zhang, F., Cao, J., Hwang, K., Wu, C.: Ordinal optimized scheduling of scientific workflows in elastic compute clouds. (2011)

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Amelec Viloria
    • 1
    Email author
  • Hugo Hernández Palma
    • 2
  • Wilmer Cadavid Basto
    • 3
  • Alexandra Perdomo Villalobos
    • 4
  • Carlos Andrés Uribe de la Cruz
    • 5
  • Juan de la Hoz Hernández
    • 2
  • Omar Bonerge Pineda Lezama
    • 6
  1. 1.Universidad de la CostaBarranquillaColombia
  2. 2.Corporación Universitaria LatinoamericanaBarranquillaColombia
  3. 3.Corporación Politécnico de la Costa AtlánticaBarranquillaColombia
  4. 4.Corporación Tecnológica IndoaméricaBarranquillaColombia
  5. 5.Sena Regional AtlánticoBarranquillaColombia
  6. 6.Universidad Tecnológica Centroamericana (UNITEC)San Pedro SulaHonduras

Personalised recommendations