Concept Timestamping on Blockchain and Decentralization of Patents

  • Kar Seng LokeEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1122)


We describe a system for registering new inventions and design based on conceptual graphs and the blockchain. Instead of describing the innovation in text as in patent claims, the claims are documented using conceptual graphs as a structured graphical method for capturing concepts and their relationship. Conceptual graphs as a structured graphical method allows easier automatic semantic comparisons. It obviates the need from extracting semantic concepts from text using natural language processing techniques. The graphs then can be hashed and submitted to the blockchain for timestamping to claim the innovation.


Blockchain Patents Timestamping Conceptual graphs Concept timestamping Decentralized systems 


  1. 1.
    Levin, R.: A patent system for the 21st century. Issues Sci. Technol. 4(20), 49–54 (2004)Google Scholar
  2. 2.
    Whalen, R.: Complex innovation and the patent office. Chicago-Kent J. Intellect. Property 17(1), 226–278 (2018)Google Scholar
  3. 3.
    Wagner, R.P.: Understanding patent quality mechanisms. Univ. Pennsylvania Law Rev. 157, 2135 (2009)Google Scholar
  4. 4.
    Zhang, L., Li, L., Li, T.: Patent mining: a survey. ACM SIGKDD Explor. Newsl. 16, 1–19 (2014)CrossRefGoogle Scholar
  5. 5.
    Wang, J., Lu, W.F., Loh, H.T.: A two-level parser for patent claim parsing. Adv. Eng. Inform. 29, 431–439 (2015)CrossRefGoogle Scholar
  6. 6.
    Sheremetyeva, S.: Automatic text simplification for handling intellectual property. In: Proceedings of the Workshop on Automatic Text Simplification: Methods and Applications in the Multilingual Society, Dublin, Ireland (2014)Google Scholar
  7. 7.
    Shinmori, A., Okumura, M., Marukawa, Y., Iwayama, M.: Patent claim processing for readability: structure analysis and term explanation. In: Proceedings of the ACL-2003 Workshop on Patent Corpus Processing, Sapporo, Japan (2003)Google Scholar
  8. 8.
    Lupu, M., Hanbury, A.: Patent retrieval. Found. Trends Inf. Retrieval 7(1), 1–97 (2013)CrossRefGoogle Scholar
  9. 9.
    Sowa, J.: Conceptual graphs. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, pp. 213–237. Elsevier (2008)Google Scholar
  10. 10.
    Woods, W.: What’s in a link: foundations for semantic networks. In: Bobrow, D., Collins, A. (eds.) Representation and Understanding, pp. 35–82. Academic Press, New York (1975)CrossRefGoogle Scholar
  11. 11.
    Peirce, C.S.: Manuscripts on existential graphs. In: Collected Papers of Charles Sanders Peirce, vol. 4, pp. 320–410. Harvard University Press, Cambridge (1906)Google Scholar
  12. 12.
    Mineau, G., Missaoui, R., Godinx, R.: Conceptual modelling for data and knowledge management. Data Knowl. Eng. 33(2), 137–168 (2000)CrossRefGoogle Scholar
  13. 13.
    Croitoru, M., et al.: Conceptual graphs based information retrieval in HealthAgents. In: Twentieth IEEE International Symposium on Computer-Based Medical Systems, Maribor, Slovenia (2007)Google Scholar
  14. 14.
    Campbell, K.E., Musen, M.A.: Representation of clinical data using SNOMED III and conceptual graphs. In: Proceedings of the Annual Symposium Computer Applications in Medical Care (1992)Google Scholar
  15. 15.
    Bernauer, J.: Conceptual graphs as an operational model for descriptive findings. In: Proceedings of the Annual Symposium on Computer Application in Medical Care (1991)Google Scholar
  16. 16.
    Ounis, I., Pa©ca, M.: Modeling, indexing and retrieving images using conceptual graphs. In: Quirchmayr, G., Schweighofer, E., Bench-Capon, T.J.M. (eds.) DEXA 1998. LNCS, vol. 1460, pp. 226–239. Springer, Heidelberg (1998). Scholar
  17. 17.
    Mulhem, P., Leow, W.K., Lee, Y.K.: Fuzzy conceptual graphs for matching images of natural scenes. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle, WA (2001)Google Scholar
  18. 18.
    Ryan, K., Mathews, B.: Matching conceptual graphs as an aid to requirements re-use. In: Proceedings of the IEEE International Symposium on Requirements Engineering, San Diego (1993)Google Scholar
  19. 19.
    Gerbé, O., Keller, R.K., Mineau, G.W.: Conceptual graphs for representing business processes in corporate memories. In: Mugnier, M.-L., Chein, M. (eds.) ICCS-ConceptStruct 1998. LNCS, vol. 1453, pp. 401–415. Springer, Heidelberg (1998). Scholar
  20. 20.
    Yang, S., Soo, V.W.: Extract conceptual graphs from plain text in patent claims. Eng. Appl. Artif. Intell. 25(4), 874–887 (2012)CrossRefGoogle Scholar
  21. 21.
    Zhong, J., Zhu, H., Li, J., Yu, Y.: Conceptual graph matching for semantic search. In: Priss, U., Corbett, D., Angelova, G. (eds.) ICCS-ConceptStruct 2002. LNCS, vol. 2393, pp. 92–106. Springer, Heidelberg (2002). Scholar
  22. 22.
    Rao, P., Devi, S.L., Rosso, P.: Automatic identification of concepts and conceptual relations from patents using machine learning methods. In: Proceedings of the 10th International Conference on Natural Language Processing ICON-2013 (2013)Google Scholar
  23. 23.
    Rao, P., Devi, S.L.: Automatic identification of conceptual structures using deep Boltzmann machines. In: Proceedings of the 7th Forum for Information Retrieval Evaluation, FIRE 2015, Gandhinagar, India (2015)Google Scholar
  24. 24.
    Levesque, H., Brachman, R.: Knowledge Representation and Reasoning. Elsevier/Morgan Kaufmann, Amsterdam (2004)zbMATHGoogle Scholar
  25. 25.
    Delugach, H.S.: Implementation and visualization of conceptual graphs in CharGer. Int. J. Conceptual Struct. Smart Appl. 2(2), 1–19 (2014)Google Scholar
  26. 26.
    Gipp, B., Meuschke, N., Gernandt, A.: Decentralized trusted timestamping using the crypto currency bitcoin. In: Proceedings of the iConference 2015, Newport Beach, California (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Data Smart PLTKuala LumpurMalaysia

Personalised recommendations