Advertisement

Bone-Conduction Audio Interface to Guide People with Visual Impairments

  • Jacobus C. LockEmail author
  • Iain D. Gilchrist
  • Grzegorz Cielniak
  • Nicola Bellotto
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1122)

Abstract

The ActiVis project’s aim is to build a mobile guidance aid to help people with limited vision find objects in an unknown environment. This system uses bone-conduction headphones to transmit audio signals to the user and requires an effective non-visual interface. To this end, we propose a new audio-based interface that uses a spatialised signal to convey a target’s position on the horizontal plane. The vertical position on the median plan is given by adjusting the tone’s pitch to overcome the audio localisation limitations of bone-conduction headphones. This interface is validated through a set of experiments with blindfolded and visually impaired participants.

Keywords

Human-machine interface Vision impairment Spatialised sound Varying pitch Bone-conduction 

Notes

Acknowledgements

This research is partly supported by a Google Faculty Research Award. We would like to thank the Voluntary Centre Services UK for their help in facilitating the experiments with people with limited vision.

References

  1. 1.
    Arditi, A., Tian, Y.: User interface preferences in the design if a camera-based navigation and wayfinding aid. J. Vis. Impair. Blind. 107(2), 118–129 (2013)CrossRefGoogle Scholar
  2. 2.
    Bajcsy, R., Aloimonos, Y., Tsotsos, J.K.: Revisiting active perception. Auton. Robot. 42(2), 177–196 (2018)CrossRefGoogle Scholar
  3. 3.
    Barfield, W., Cohen, M., Rosenberg, C.: Visual and auditory localization as a function of azimuth and elevation. Int. J. Aviat. Psychol. 7(2), 123–138 (1997)CrossRefGoogle Scholar
  4. 4.
    Blauert, J.: Spatial Hearing: The Psychophysics of Human Sound Localization. MIT Press, Cambridge (1997)Google Scholar
  5. 5.
    Blauert, J.: Sound localization in the median plane. Acta Acustica United Acustica 22(4), 205–213 (1969)Google Scholar
  6. 6.
    Blum, J.R., Bouchard, M., Cooperstock, J.R.: Spatialized audio environmental awareness for blind users with a smartphone. Mob. Netw. Appl. 18(3), 295–309 (2013)CrossRefGoogle Scholar
  7. 7.
    Chessa, M., Noceti, N., Odone, F., Solari, F., Sosa-García, J., Zini, L.: An integrated artificial vision framework for assisting visually impaired users. Comput. Vis. Image Underst. 149, 209–228 (2016)CrossRefGoogle Scholar
  8. 8.
    Durette, B., Louveton, N., Alleysson, D., Hérault, J.: Visuo-auditory sensory substitution for mobility assistance: testing TheVIBE. In: Workshop on Computer Vision Applications for the Visually Impaired (2008)Google Scholar
  9. 9.
    Gallina, P., Bellotto, N., Luca, M.D., Di Luca, M.: Progressive co-adaptation in human-machine interaction. In: International Conference on Informatics in Control, Automation and Robotics, vol. 2, pp. 362–368 (2015)Google Scholar
  10. 10.
    Gardner, W.G., Martin, K.D.: HRTF measurements of a KEMAR. J. Acoust. Soc. Am. 97(6), 3907–3908 (1995)CrossRefGoogle Scholar
  11. 11.
    Geronazzo, M., Bedin, A., Brayda, L., Campus, C., Avanzini, F.: Interactive spatial sonification for non-visual exploration of virtual maps. Int. J. Hum. Comput. Stud. 85, 4–15 (2016)CrossRefGoogle Scholar
  12. 12.
    Golledge, R.G., Marston, J.R., Loomis, J.M., Klatzky, R.L.: Stated preferences for components of a personal guidance system for nonvisual navigation. J. Vis. Impair. Blind. 98(3), 135–147 (2004)CrossRefGoogle Scholar
  13. 13.
    Hiebert, G.: OpenAL 1.1 Specification and Reference (2005)Google Scholar
  14. 14.
    Kanwal, N., Bostanci, E., Currie, K., Clark, A.F.: A navigation system for the visually impaired: a fusion of vision and depth sensor. Appl. Bionics Biomech. (2015). https://www.hindawi.com/journals/abb/2015/479857/cta/
  15. 15.
    Katz, B.F.G., Picinali, L.: Spatial audio applied to research with the blind. In: Advances in Sound Localization, pp. 225–250 (2011)Google Scholar
  16. 16.
    Katz, B.F.G., Truillet, P., Thorpe, S.J., Jouffrais, C.: NAVIG: navigation assisted by artificial vision and GNSS. In: Workshop on Multimodal Location Based Techniques for Extreme Navigation, vol. 1, pp. 1–4 (2010)Google Scholar
  17. 17.
    Klatzky, R.L., Marston, J.R., Giudice, N.A., Golledge, R.G., Loomis, J.M.: Cognitive load of navigating without vision when guided by virtual sound versus spatial language. J. Exp. Psychol.: Appl. 12(4), 223–232 (2006)Google Scholar
  18. 18.
    Lee, Y., Medioni, G.: RGB-D camera based wearable navigation system for the visually impaired. Comput. Vis. Image Underst. 149, 3–20 (2015)CrossRefGoogle Scholar
  19. 19.
    Lichenstein, R., Smith, D.C., Ambrose, J.L., Moody, L.A.: Headphone use and pedestrian injury and death in the united states: 2004–2011. Inj. Prev. 18(5), 287–290 (2012)CrossRefGoogle Scholar
  20. 20.
    Lock, J.C., Cielniak, G., Bellotto, N.: Portable navigations system with adaptive multimodal interface for the blind. In: AAAI Spring Symposium - Designing the User Experience of Machine Learning Systems (2017)Google Scholar
  21. 21.
    Lock, J.C., Cielniak, G., Bellotto, N.: Active object search with a mobile device for people with visual impairments. In: International Conference on Computer Vision Theory and Applications, pp. 476–485 (2019)Google Scholar
  22. 22.
    MacDonald, J.A., Henry, P.P., Letowski, T.R.: Spatial audio through a bone conduction interface. Int. J. Audiol. 45(10), 595–599 (2006)CrossRefGoogle Scholar
  23. 23.
    Mocanu, B., Tapu, R., Zaharia, T.: When ultrasonic sensors and computer vision join forces for efficient obstacle detection and recognition. Sensors 16(11), 1807 (2016)CrossRefGoogle Scholar
  24. 24.
    Pratt, C.: The spatial character of high and low tones. J. Exp. Psychol. 13(3), 278 (1930)CrossRefGoogle Scholar
  25. 25.
    Rivera-Rubio, J., Arulkumaran, K., Rishi, H., Alexiou, I., Bharath, A.A.: An assistive haptic interface for appearance-based indoor navigation. Comput. Vis. Image Underst. 149, 126–145 (2015)CrossRefGoogle Scholar
  26. 26.
    RNIB: UK vision strategy. Technical report, RNIB (2016). Accessed 19 July 2016Google Scholar
  27. 27.
    Rodríguez, A., Bergasa, L.M., Alcantarilla, P.F., Yebes, J., Cela, A.: Obstacle avoidance system for assisting visually impaired people. In: Intelligent Vehicles Symposium Workshops, pp. 1–6 (2012)Google Scholar
  28. 28.
    Schonstein, D., Ferré, L., Katz, B.F.: Comparison of headphones and equalization for virtual auditory source localization. J. Acoust. Soc. Am. 5, 3724–3724 (2008)CrossRefGoogle Scholar
  29. 29.
    Schwarze, T., Lauer, M., Schwaab, M., Romanovas, M., Bohm, S., Jurgensohn, T.: An intuitive mobility aid for visually impaired people based on stereo vision. In: International Conference on Computer Vision Workshops, pp. 17–25 (2015)Google Scholar
  30. 30.
    Shepard, R.: Circularity in judgments of relative pitch. J. Acoust. Soc. Am. 36(12), 2346–2353 (1964)CrossRefGoogle Scholar
  31. 31.
    Stanley, R.M., Walker, B.N.: Lateralization of sounds using bone-conduction headsets. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 1571–1575. SAGE Publications, Los Angeles (2006)CrossRefGoogle Scholar
  32. 32.
    Wilson, J., Walker, B.N., Lindsay, J., Cambias, C., Dellaert, F.: SWAN: system for wearable audio navigation. In: International Symposium on Wearable Computers, pp. 91–98 (2007)Google Scholar
  33. 33.
    Xiao, J., Joseph, S.L., Zhang, X., Li, B., Li, X., Zhang, J.: An assistive navigation framework for the visually impaired. IEEE Trans. Hum.-Mach. Syst. 45(5), 635–640 (2015)CrossRefGoogle Scholar
  34. 34.
    Yusif, S., Soar, J., Hafeez-Baig, A.: Older people, assistive technologies, and the barriers to adoption: a systematic review. Int. J. Med. Informatics 94, 112–116 (2016)CrossRefGoogle Scholar
  35. 35.
    Zwiers, M.P., Van Opstal, A.J., Cruysberg, J.R.M., Opstal, A.J.V., Cruysberg, J.R.M.: A spatial hearing deficit in early-blind humans. J. Neurosci. 21(1529–2401), RC142–RC145 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jacobus C. Lock
    • 1
    Email author
  • Iain D. Gilchrist
    • 2
  • Grzegorz Cielniak
    • 1
  • Nicola Bellotto
    • 1
  1. 1.University of LincolnLincolnUK
  2. 2.University of BristolBristolUK

Personalised recommendations