Advertisement

A High Throughput MAC Protocol for Wireless Body Area Networks in Intensive Care

  • Amir Javadpour
  • Guojun Wang
  • Kuan-Ching Li
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1122)

Abstract

Health monitoring systems are one of the fastest-growing industries in the world, as the world’s older population grows dramatically at an unprecedented rate. These systems provide an opportunity to share the medical information, medical applications and infrastructures required in a fully automated way accessible everywhere. This paper addresses the need for a protocol in health applications which covers packets collision while considering the balance between transferred information and service quality, as thoroughly examines details of simulating media access control protocols in body area sensor networks based on a combination of pooling and TDMA protocols. Experimental results validate the proposed protocol with high throughput and acceptable delay.

Keywords

IOT monitoring Wireless Body Area Networks Intensive care TaMAC Vital signs Internet of Things Smart sensing 

Notes

Acknowledgment

This work was supported in part by the National Natural Science Foundation of China under Grant 61632009, in part by the Guangdong Provincial Natural Science Foundation under Grant 2017A030308006, and in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01.

References

  1. 1.
    Javadpour, A., Memarzadeh-Tehran, H., Saghafi, F.: A temperature monitoring system incorporating an array of precision wireless thermometers. In: 2015 International Conference on Smart Sensors and Application (ICSSA), pp. 155–160 (2015)Google Scholar
  2. 2.
    Balampanis, S., Sotiriadis, S., Petrakis, E.: Internet of Things architecture in cloud computing for enhanced living environments. IEEE Cloud Comput. 3(6), 28–34 (2016)CrossRefGoogle Scholar
  3. 3.
    Javadpour, A., Wang, G., Rezaei, S., Chend, S.: Power curtailment in cloud environment utilising load balancing machine allocation. In: 2018 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 1364–1370 (2018)Google Scholar
  4. 4.
    Javadpour, A.: Improving resources management in network virtualization by utilizing a software-based network. Wirel. Pers. Commun. 106(2), 505–519 (2019)CrossRefGoogle Scholar
  5. 5.
    Javadpour, A.: Providing a way to create balance between reliability and delays in SDN networks by using the appropriate placement of controllers. Wirel. Pers. Commun. (2019)Google Scholar
  6. 6.
    Ali, M., Moungla, H., Younis, M., Mehaoua, A.: IoT-enabled channel selection approach for WBANs. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1784–1790 (2017)Google Scholar
  7. 7.
    Javadpour, A., Adelpour, N., Wang, G., Peng, T.: Combing fuzzy clustering and PSO algorithms to optimize energy consumption in WSN networks. In: 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet People Smart City Innovation, pp. 1371–1377 (2018)Google Scholar
  8. 8.
    Zhu, X., Wu, J., Chang, W., Wang, G., Liu, Q.: Authentication of skyline query over road networks. In: Wang, G., Chen, J., Yang, Laurence T. (eds.) SpaCCS 2018. LNCS, vol. 11342, pp. 72–83. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-05345-1_6CrossRefGoogle Scholar
  9. 9.
    Bradai, N., Fourati, L.C., Kamoun, L.: Investigation and performance analysis of MAC protocols for WBAN networks. J. Netw. Comput. Appl. 46, 362–373 (2014)CrossRefGoogle Scholar
  10. 10.
    Salayma, M., Al-Dubai, A., Romdhani, I., Nasser, Y.: Reliability and energy efficiency enhancement for emergency-aware wireless body area networks (WBAN). IEEE Trans. Green Commun. Netw. 2, 804–816 (2018)CrossRefGoogle Scholar
  11. 11.
    Wei, Z., Sun, Y., Ji, Y.: Collision analysis of CSMA/CA based MAC protocol for duty cycled WBANs. Wirel. Netw. 23, 1429–1447 (2016)CrossRefGoogle Scholar
  12. 12.
    Ullah, S., et al.: A comprehensive survey of wireless body area networks. J. Med. Syst. 36(3), 1065–1094 (2012)CrossRefGoogle Scholar
  13. 13.
    Filipe, L., Fdez-Riverola, F., Costa, N., Pereira, A.: Wireless body area networks for healthcare applications: protocol stack review. Int. J. Distrib. Sens. Networks 11(10), 213705 (2015)Google Scholar
  14. 14.
    ur Rahman, H., Wang, G., Chen, J., Jiang, H.: Performance evaluation of hypervisors and the effect of virtual CPU on performance. In: 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 772–779 (2018)Google Scholar
  15. 15.
    Javadpour, A., Memarzadeh-Tehran, H.: A wearable medical sensor for provisional healthcare. I: ISPTS 2015 - 2nd International Symposium on Physics and Technology of Sensors Dive Deep Into Sensors, pp. 293–296 (2015)Google Scholar
  16. 16.
    Kang, J., Yoo, S., Oh, D.: Development of a portable embedded patient monitoring system. Int. J. Multimed. Ubiquitous Eng. 8(6), 141–150 (2013)CrossRefGoogle Scholar
  17. 17.
    Javadpour, A., Wang, G., Xing, X.: Managing heterogeneous substrate resources by mapping and visualization based on software-defined network. In: 2018 IEEE International Conference on Parallel Distributed Processing with Applications, Ubiquitous Computing Communications, Big Data Cloud Computing, Social Computing Networking, Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 316–321 (2018)Google Scholar
  18. 18.
    Rizvi, S.Q.A., Wang, G., Chen, J.: A service oriented healthcare architecture (SOHA-CC) based on cloud computing. In: Wang, G., Chen, J., Yang, Laurence T. (eds.) SpaCCS 2018. LNCS, vol. 11342, pp. 84–97. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-05345-1_7CrossRefGoogle Scholar
  19. 19.
    Catarinucci, L., et al.: An IoT-aware architecture for smart healthcare systems. IEEE IoT J. 2(6), 515–526 (2015)Google Scholar
  20. 20.
    Javaid, N., Israr, I., Khan, M.A., Javaid, A., Bouk, S.H., Khan, Z.A.: Analyzing medium access techniques in wireless body area network (2013)Google Scholar
  21. 21.
    Ullah, F., Abdullah, A.H., Kaiwartya, O., Kumar, S., Arshad, M.M.: Medium access control (MAC) for wireless body area network (WBAN): superframe structure, multiple access technique, taxonomy, and challenges. Hum.-Centric Comput. Inf. Sci. 7(1), 34 (2017)CrossRefGoogle Scholar
  22. 22.
    Wei, Z., Sun, Y., Ji, Y.: Collision analysis of CSMA/CA based MAC protocol for duty cycled WBANs. Wirel. Netw. 10, 1–19 (2016)Google Scholar
  23. 23.
    Ullah, S., Shen, B., Riazul Islam, S.M., Khan, P., Saleem, S., Kwak, K.S.: A study of MAC protocols for WBANs. Sensors 10(1), 128–145 (2010)CrossRefGoogle Scholar
  24. 24.
    Khan, Z.A., Rasheed, M.B., Javaid, N., Robertson, B.: Effect of packet inter-arrival time on the energy consumption of beacon enabled MAC protocol for body area networks. Procedia Comput. Sci. 32, 579–586 (2014)CrossRefGoogle Scholar
  25. 25.
    Israr, I., Yaqoob, M.M., Javaid, N., Qasim, U., Khan, Z.A.: Simulation analysis of medium access techniques. In: Proceedings of 2012 7th International Conference on Broadband, Wireless Computing Communication and Applications BWCCA 2012, pp. 602–607 (2012)Google Scholar
  26. 26.
    Rajesh, G.K., Baskaran, K.: A survey on futuristic health care system: WBANs. Procedia Eng. 30, 889–896 (2012)CrossRefGoogle Scholar
  27. 27.
    Latre, B., et al.: A low-delay protocol for multihop wireless body area networks. In: 2007 Fourth Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services (MobiQuitous), pp. 1–8 (2007)Google Scholar
  28. 28.
    Ullah, S., Kwak, K.S.: An ultra low-power and traffic-adaptive medium access control protocol for wireless body area network. J. Med. Syst. 36(3), 1021–1030 (2012)CrossRefGoogle Scholar
  29. 29.
    Kwak, K.-S., Ameen, M.A., Kwak, D., Lee, C., Lee, H.: A study on proposed IEEE 802.15 WBAN MAC protocols. In: 9th International Symposium on Communications and Information Technology ISCIT 2009, pp. 834–840 (2009)Google Scholar
  30. 30.
    Bhanumathi, V., Sangeetha, C.P.: A guide for the selection of routing protocols in WBAN for healthcare applications. Hum.-Centric Comput. Inf. Sci. 7(1), 24 (2017)CrossRefGoogle Scholar
  31. 31.
    Bhuiyan, M.Z.A., Cao, J., Wang, G., Liu, X.: Energy-efficient and fault-tolerant structural health monitoring in wireless sensor networks. In: 2012 IEEE 31st Symposium on Reliable Distributed Systems, pp. 301–310 (2012)Google Scholar
  32. 32.
    Bhuiyan, M.Z.A., Wang, G., Wu, J., Cao, J., Liu, X., Wang, T.: Dependable structural health monitoring using wireless sensor networks. IEEE Trans. Dependable Secur. Comput. 14(4), 363–376 (2017)CrossRefGoogle Scholar
  33. 33.
    Issariyakul, T., Hossain, E.: Introduction to Network Simulator NS2, pp. 1–510. Springer, Berlin (2012).  https://doi.org/10.1007/978-1-4614-1406-3CrossRefGoogle Scholar
  34. 34.
    Javadpour, A.: An optimize-aware target tracking method combining MAC layer and active nodes in wireless sensor networks. Wirel. Pers. Commun. (2019)Google Scholar
  35. 35.
    Shamshirband, S., Anuar, N.B., Kiah, M., Misra, S.: Anomaly detection using fuzzy Q-learning algorithm. J. Intell. Fuzzy Syst. 11(8), 5–28 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Computer ScienceGuangzhou UniversityGuangzhouChina
  2. 2.Department of Computer Science and Information EngineeringProvidence UniversityTaichungTaiwan

Personalised recommendations