Advertisement

Educational Psychology in Latin America: With Linear Hierarchical Models

  • Jesús SilvaEmail author
  • Darwin Solano
  • Claudia Fernández
  • Ligia Romero
  • Nataly Orellano Llinás
  • Ana María Negrete Sepúlveda
  • Luz Estela Leon Coronado
  • Rosio Barrios González
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1122)

Abstract

Research in clinical psychology, since its inception, has been aimed at analyzing, predicting and explaining the effect of treatments, by studying the change of patients in the course of them. To study the effects of therapy, research based on quantitative analysis models has historically used classical methods of parametric statistics, such as Pearson correlations, least squares regressions Student’s T-Tests and Variance Analysis (ANOVA). Hierarchical linear models (HLMs) represent a fundamental statistical strategy for research in psychotherapy, as they allow to overcome dependence on the observations usually presented in your data. The objective of this work is to present a guide to understanding, applying and reporting HLMs to study the effects of psychotherapy.

Keywords

Hierarchical linear models Growth curve models Multilevel models Psychotherapy 

References

  1. 1.
    Bates, D., Mäechler, M., Bolker, B., Walker, S.: Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015).  https://doi.org/10.18637/jss.v067.i01CrossRefGoogle Scholar
  2. 2.
    Behn, A.J., Errázuriz, P.A., Cottin, M., Fischer, C.: Change in symptomatic burden and life satisfaction during short-term psychotherapy: focusing on the role of family income. Counselling Psychother. Res. 18(2), 133–142 (2017).  https://doi.org/10.1002/capr.12158CrossRefGoogle Scholar
  3. 3.
    Gómez Penedo, J.M., Constantino, M.J., Coyne, A., Westra, H., Antony, M.: Markers for context-responsiveness: client baseline interpersonal problems moderate the efficacy of two psychotherapies for generalized anxiety disorder. J. Consult. Clin. Psychol. 85(10), 1000–1011 (2017).  https://doi.org/10.1037/ccp0000233CrossRefGoogle Scholar
  4. 4.
    Gómez Penedo, J.M., Juan, S., Manubens, R.T., Roussos, A.: The study of change in psychotherapy: conceptual challenges and problems of empirical research. Yearbook Psychol. Res. 24, 15–24 (2018)Google Scholar
  5. 5.
    Hayes, A.F.: Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. Guilford Publications, New York (2017)Google Scholar
  6. 6.
    Bucci, N., et al.: Factor analysis of the psychosocial risk assessment instrument. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 149–158. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93803-5_14CrossRefGoogle Scholar
  7. 7.
    Gaitán-Angulo, M., Viloria, A., Abril, J.E.S.: Hierarchical ascending classification: an application to contraband apprehensions in colombia (2015–2016). In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 168–178. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-319-93803-5_16CrossRefGoogle Scholar
  8. 8.
    Viloria, A., Lezama, O.B.P.: An intelligent approach for the design and development of a personalized system of knowledge representation. Procedia Comput. Sci. 151, 1225–1230 (2019)CrossRefGoogle Scholar
  9. 9.
    Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching - learning process through knowledge data discovery (big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 670–679. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93803-5_63CrossRefGoogle Scholar
  10. 10.
    Viloria, A., et al.: Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In: Tan, Y., Shi, Y., Tang, Q. (eds.) DMBD 2018. LNCS, vol. 10943, pp. 304–313. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93803-5_29CrossRefGoogle Scholar
  11. 11.
    Wang, J., Xie, H., Fisher, J.H.: Multilevel Models: Applications Using SAS. De Gruyter, Berlin (2012)zbMATHGoogle Scholar
  12. 12.
    Areas, M., Roussos, A., Hirsch, H., Hirsch, P., Becerra, P., Gómez Penedo, J.M.: Evaluation of a research device oriented to practice in the development of a feedback system in psychotherapy. Argentine J. Psychol. Clinic 27(2), 229–249 (2018)Google Scholar
  13. 13.
    Westra, H.A., Constantino, M.J., Antony, M.M.: Integrating motivational interviewing with cognitive-behavioral therapy for severe generalized anxiety disorder: an allegiance controlled randomized clinical trial. J. Consult. Clin. Psychol. 84(9), 768–782 (2016).  https://doi.org/10.1037/ccp0000098CrossRefGoogle Scholar
  14. 14.
    Zilcha-Mano, S., Errázuriz, P.: One size does not fit all: examining heterogeneity and identifying moderators of the alliance–outcome association. J. Counseling Psychol. 62(4), 579–591 (2015).  https://doi.org/10.1037/cou0000103CrossRefGoogle Scholar
  15. 15.
    Hox, J., Maas, C.: Multilevel analysis. In: Encyclopedia of Social Measurement, vol. 2, pp. 785–793 (2005).  https://doi.org/10.1016/b0-12-369398-5/00560-0CrossRefGoogle Scholar
  16. 16.
    Mellado, A., et al.: Disentangling the change-alliance relationship: observational assessment of the therapeutic alliance during change and stuck episodes. Psychotherapy Res. 27(5), 595–607 (2017).  https://doi.org/10.1080/10503307.2016.1147657CrossRefGoogle Scholar
  17. 17.
    Ogles, B.M.: Measuring change in psychotherapy research. In: Lambert, M.J. (ed.) Bergin and Garfields’s Handbook of Psychotherapy and Behavior Change, pp. 134–166. Wiley, New Jersey (2013)Google Scholar
  18. 18.
    Raudenbush, S.W., Bryk, A.S.: Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd edn. Sage, Thousand Oaks (2002)Google Scholar
  19. 19.
    Raudenbush, S.W., Bryk, A.S., Cheong, Y.F., Congdon, R.T., du Toit, M.: HLM7: Hierarchical Linear and Nonlinear Modeling. Scientific Software International, Chicago (2011)Google Scholar
  20. 20.
    Skrondal, A., Rabe-Hesketh, S.: Generalized Latent Variable Modeling. Chapman & Hall/CRC, Boca Raton (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jesús Silva
    • 1
    Email author
  • Darwin Solano
    • 2
  • Claudia Fernández
    • 2
  • Ligia Romero
    • 2
  • Nataly Orellano Llinás
    • 3
  • Ana María Negrete Sepúlveda
    • 4
  • Luz Estela Leon Coronado
    • 3
  • Rosio Barrios González
    • 3
  1. 1.Universidad Peruana de Ciencias AplicadasLimaPeru
  2. 2.Universidad de la CostaBarranquillaColombia
  3. 3.Corporación Universitaria Minuto de Dios – UNIMINUTOBarranquillaColombia
  4. 4.Universidad Cooperativa de Colombia campus MonteríaMonteríaColombia

Personalised recommendations