Bionanotechnology in Pharmaceuticals

  • Young-Chul Lee
  • Ju-Young Moon


Bionanotechnology has been widely applied in pharmaceutical applications, which are well-known as drug delivery systems. The applications of bioanotechnology in the pharmaceutical field have been represented as utilization of bionanomaterials to pharmacy, and as campaigns like imaging, diagnostic, drug delivery and biosensors. It has been demonstrated that the drug delivery systems influenced the absorption ability, excretion, metabolism, distribution of the drug or other related chemical components in the body. Bionanotechnology has created novel technologies for interfacing between nanoscale materials and biological systems based on investigating their interactions. Main products of bionanotechnology in the pharmaceutical field comprise nanomedicines and their components, including: (a) carriers to enhance both circulatory persistence and targeted drugs to specific cells; (b) delivery vehicles to improve controllable drug release; (c) adjuvants for delivery of vaccine, genes and diagnostic; (d) additives to enhance bioavailability, solubility, and stability of poorly soluble drugs [1].


  1. 1.
    Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–22.CrossRefADSGoogle Scholar
  2. 2.
    Abbasi E, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9:247.CrossRefADSGoogle Scholar
  3. 3.
    Mignani S, Majoral J-P. Dendrimers as macromolecular tools to tackle from colon to brain tumor types: a concise overview. New J Chem. 2013;37:3337–57.CrossRefGoogle Scholar
  4. 4.
    Satija J, Sai VVR, Mukherji S. Dendrimers in biosensors: concept and applications. J Mater Chem. 2011;21:14367–86.CrossRefGoogle Scholar
  5. 5.
    Liu Z-M, et al. A hydrogen peroxide biosensor based on nano-au/PAMAM dendrimer/cystamine modified gold electrode. Sensors Actuators B Chem. 2005;106:394–400.CrossRefGoogle Scholar
  6. 6.
    Erdem A, Eksin E, Kesici E, Yaralı E. Dendrimers integrated biosensors for healthcare applications. Elsevier; 2018. 307–317.Google Scholar
  7. 7.
    Yoon HC, Hong M-Y, Kim H-S. Affinity biosensor for avidin using a double functionalized dendrimer monolayer on a gold electrode. Anal Biochem. 2000;282:121–8.CrossRefGoogle Scholar
  8. 8.
    Yoon HC, Hong M-Y, Kim H-S. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode. Anal Chem. 2000;72:4420–7.CrossRefGoogle Scholar
  9. 9.
    Kim E, Kim K, Yang H, Kim YT, Kwak J. Enzyme-amplified electrochemical detection of DNA using electrocatalysis of ferrocenyl-tethered dendrimer. Anal Chem. 2003;75:5665–72.CrossRefGoogle Scholar
  10. 10.
    Snejdarkova M, Svobodova L, Nikolelis DP, Wang J, Hianik T. Acetylcholine biosensor based on dendrimer layers for pesticides detection. Electroanalysis. 2003;15:1185–91.CrossRefGoogle Scholar
  11. 11.
    Kwon SJ, Kim E, Yang H, Kwak J. An electrochemical immunosensor using ferrocenyl-tethered dendrimer. Analyst. 2006;131:402–6.CrossRefADSGoogle Scholar
  12. 12.
    Bustos EB, et al. Glassy carbon electrodes modified with composites of starburst-PAMAM dendrimers containing metal nanoparticles for amperometric detection of dopamine in urine. Talanta. 2007;72:1586–92.CrossRefGoogle Scholar
  13. 13.
    Rahman MA, Noh H-B, Shim Y-B. Direct electrochemistry of laccase immobilized on au nanoparticles encapsulated-dendrimer bonded conducting polymer: application for a catechin sensor. Anal Chem. 2008;80:8020–7.CrossRefGoogle Scholar
  14. 14.
    Lee Y, et al. Protein-conjugated, glucose-sensitive surface using fluorescent dendrimer porphyrin. J Mater Chem. 2009;19:5643–7.CrossRefGoogle Scholar
  15. 15.
    Trévisiol E, et al. Dendrislides, dendrichips: a simple chemical functionalization of glass slides with phosphorus dendrimers as an effective means for the preparation of biochips. New J Chem. 2003;27:1713–9.CrossRefGoogle Scholar
  16. 16.
    Mark SS, Sandhyarani N, Zhu C, Campagnolo C, Batt CA. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface. Langmuir. 2004;20:6808–17.CrossRefGoogle Scholar
  17. 17.
    Singh P, et al. Dendrimer modified biochip for detection of 2,4,6 trinitrotoluene on SPR immunosensor: fabrication and advantages. Sensors Actuators B Chem. 2009;137:403–9.CrossRefGoogle Scholar
  18. 18.
    Zucolotto V, et al. Catechol biosensing using a nanostructured layer-by-layer film containing cl-catechol 1,2-dioxygenase. Biosens Bioelectron. 2006;21:1320–6.CrossRefGoogle Scholar
  19. 19.
    Zhang Z, et al. A sensitive impedimetric thrombin aptasensor based on polyamidoamine dendrimer. Talanta. 2009;78:1240–5.CrossRefGoogle Scholar
  20. 20.
    Zhu N, et al. Sensitive impedimetric DNA biosensor with poly(amidoamine) dendrimer covalently attached onto carbon nanotube electronic transducers as the tether for surface confinement of probe DNA. Biosens Bioelectron. 2010;25:1498–503.CrossRefGoogle Scholar
  21. 21.
    Kirtane AR, Panyam JP n. Weighing up gene delivery. Nat Nanotechnol. 2013;8:805–6.CrossRefADSGoogle Scholar
  22. 22.
    Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov. 2009;8:129–38.CrossRefGoogle Scholar
  23. 23.
    Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4:581–93.CrossRefGoogle Scholar
  24. 24.
    Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci. 2005;30:294–324.CrossRefGoogle Scholar
  25. 25.
    Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker JR. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharm Sci Technol Today. 2000;3:232–45.CrossRefGoogle Scholar
  26. 26.
    Caminade AM, Turrin CO, Majoral JP. Dendrimers and DNA: combinations of two special topologies for nanomaterials and biology. Chem Eur J. 2008;14:7422–32.CrossRefGoogle Scholar
  27. 27.
    Qamhieh K, et al. Complexes formed between DNA and poly(amido amine) dendrimers of different generations – modelling DNA wrapping and penetration. Phys Chem Chem Phys. 2014;16:13112–22.CrossRefGoogle Scholar
  28. 28.
    Pavan GM, Danani A, Pricl S, Smith DK. Modeling the multivalent recognition between dendritic molecules and DNA: understanding how ligand "sacrifice" and screening can enhance binding. J Am Chem Soc. 2009;131:9686–94.CrossRefGoogle Scholar
  29. 29.
    Shcharbin D, Pedziwiatr E, Bryszewska M. How to study dendriplexes I: characterization. J Control Release. 2009;135:186–97.CrossRefGoogle Scholar
  30. 30.
    Dufeś C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Deliv Rev. 2005;57:2177–202.CrossRefGoogle Scholar
  31. 31.
    Wang X, Shao N, Zhang Q, Cheng Y. Mitochondrial targeting dendrimer allows efficient and safe gene delivery. J Mater Chem B. 2014;2:2546–53.CrossRefGoogle Scholar
  32. 32.
    Šebestík J, Reiniš M, Ježek J. Dendrimers in gene delivery. Springer; 2012.Google Scholar
  33. 33.
    Yang J, Zhang Q, Chang H, Cheng Y. Surface-engineered Dendrimers in gene delivery. Chem Rev. 2015;115:5274–300.CrossRefGoogle Scholar
  34. 34.
    Jones M-C, Gao H, Leroux J-C. Reverse polymeric micelles for pharmaceutical applications. J Control Release. 2008;132:208–15.CrossRefGoogle Scholar
  35. 35.
    Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:340315.CrossRefGoogle Scholar
  36. 36.
    Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv. 2006;3:139–62.CrossRefGoogle Scholar
  37. 37.
    Ahmad Z, Shah A, Siddiq M, Kraatz H-B. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014;4:17028–38.CrossRefGoogle Scholar
  38. 38.
    Hanafy NAN, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers. 2018;10:238.CrossRefGoogle Scholar
  39. 39.
    Liu D-Z, Hsieh J-H, Fan X-C, Yang J-D. Tze-WenChung. Synthesis, characterization and drug delivery behaviors of new PCP polymeric micelles. Carbohydr Polym. 2007;68:544–54.CrossRefGoogle Scholar
  40. 40.
    Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6:714–29.CrossRefGoogle Scholar
  41. 41.
    Chen H, Khemtong C, Yang X, Chang X, Gao J. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 2011;16:354–60.CrossRefGoogle Scholar
  42. 42.
    Meng H-M, Liu H, Kuai H, Peng R, Moa L, Zhang X-B. Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev. 2016;45:2583–602.CrossRefGoogle Scholar
  43. 43.
    Liu H, et al. DNA-based micelles: synthesis, micellar properties and size-dependent cell permeability. Chem Eur J. 2010;16:3791–7.CrossRefADSGoogle Scholar
  44. 44.
    Wu Y, Sefah K, Liu H, Wang R, Tan W. DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci U S A. 2010;107:5–10.CrossRefADSGoogle Scholar
  45. 45.
    Jin C, et al. Engineering stability-tunable DNA micelles using photocontrollable dissociation of an intermolecular G-Quadruplex. ACS Nano. 2017;11:12087–93.CrossRefGoogle Scholar
  46. 46.
    Zou J, et al. Fluorinated DNA micelles: synthesis and properties. Anal Chem. 2018;90:6843–50.CrossRefGoogle Scholar
  47. 47.
    Tran VV, Moon J-Y, Lee Y-C. Liposomes for delivery of antioxidants in cosmeceuticals: challenges and development strategies. J Control Release. 2019;300:114–40.CrossRefGoogle Scholar
  48. 48.
    Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115:10938–66.CrossRefGoogle Scholar
  49. 49.
    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.CrossRefGoogle Scholar
  50. 50.
    Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23:3319–29.CrossRefGoogle Scholar
  51. 51.
    Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 2002;4:95–9.CrossRefGoogle Scholar
  52. 52.
    Simoes S, et al. Cationic liposomes for gene delivery. Expert Opin Drug Deliv. 2005;2:237–54.CrossRefGoogle Scholar
  53. 53.
    Xu Y, Szoka FC. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996;35:5616–23.CrossRefGoogle Scholar
  54. 54.
    Düzgünes N, et al. Cationic liposomes for gene delivery: novel cationic lipids and enhancement by proteins and peptides. Curr Med Chem. 2003;10:1213–20.CrossRefGoogle Scholar
  55. 55.
    Storm G, et al. Novel developments in liposomal delivery of peptides and proteins. J Control Release. 1995;36:19–24.CrossRefGoogle Scholar
  56. 56.
    Swaminathan J, Ehrhardt C. Liposomal delivery of proteins and peptides. Expert Opin Drug Deliv. 2012;9:1489–503.CrossRefGoogle Scholar
  57. 57.
    McClements DJ. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: a review. Adv Colloid Interf Sci. 2018;253:1–22.CrossRefGoogle Scholar
  58. 58.
    Knauer N, Pashkina E, Apartsin E. Topological aspects of the design of nanocarriers for therapeutic peptides and proteins. Pharmaceutics. 2019;11:91.CrossRefGoogle Scholar
  59. 59.
    Diociaiuti M, et al. Calcitonin forms oligomeric pore-like structures in lipid membranes. Biophys J. 2006;91:2275–81.CrossRefGoogle Scholar
  60. 60.
    Pardeike J, Hommoss A, Müller H. R. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170–84.CrossRefGoogle Scholar
  61. 61.
    Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47:165–96.CrossRefGoogle Scholar
  62. 62.
    Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59:522–30.CrossRefGoogle Scholar
  63. 63.
    Tran VV, Nguyen TL, Moon J-Y, Lee Y-C. Core-shell materials, lipid particles and nanoemulsions, for delivery of active anti-oxidants in cosmetic applications: challenges and development strategies. Chem Eng J. 2019;368:88–114.CrossRefGoogle Scholar
  64. 64.
    Das S, Ng WK, Tan RBH. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47:139–51.CrossRefGoogle Scholar
  65. 65.
    Ghanbarzadeh S, et al. Enhanced stability and dermal delivery of hydroquinone using solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2015;136:1004–10.CrossRefGoogle Scholar
  66. 66.
    Li Q, et al. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nano. 2017;7:122.ADSGoogle Scholar
  67. 67.
    Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine. 2007;2:289–300.Google Scholar
  68. 68.
    Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.CrossRefGoogle Scholar
  69. 69.
    Serpell CJ, Kostarelos K, Davis BG. Can carbon nanotubes deliver on their promise in biology? Harnessing unique properties for unparalleled applications. ACS Cent Sci. 2016;2:190–200.CrossRefGoogle Scholar
  70. 70.
    Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomedicine. 2008;4:173–82.CrossRefGoogle Scholar
  71. 71.
    Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res. 2008;41:60–8.CrossRefGoogle Scholar
  72. 72.
    Koshino M, et al. Imaging of single organic molecules in motion. Science. 2007;316:853.CrossRefADSGoogle Scholar
  73. 73.
    Khlobystov AN, Britz DA, Briggs GAD. Molecules in carbon nanotubes. Acc Chem Res. 2005;38:901–9.CrossRefGoogle Scholar
  74. 74.
    Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011;6:555.CrossRefADSGoogle Scholar
  75. 75.
    Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issue. Nanomedicine. 2008;4:183–200.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Young-Chul Lee
    • 1
  • Ju-Young Moon
    • 2
  1. 1.Department of BioNano TechnologyGachon UniversitySeongnam-siRepublic of Korea
  2. 2.Department of Beauty Design ManagementHansung UniversitySeoulRepublic of Korea

Personalised recommendations