Advertisement

Bionanotechnology in Environment

  • Young-Chul Lee
  • Ju-Young Moon
Chapter
  • 48 Downloads

Abstract

Biopolymers are organic polymers that are synthesized by living organisms or from nature products (biomass). They was developed from monomeric units that are bonded together into larger formations [1]. Cellulose is the most common biopolymers on Earth, 90% of cotton and 50% of wood is cellulose (Fig. 12.1) [2].

References

  1. 1.
    Chang I, Im J, Cho G-C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability. 2016;8(3):251.  https://doi.org/10.3390/su8030251.CrossRefGoogle Scholar
  2. 2.
    Klemm D, Heublein B, Fink H-P, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358–93.  https://doi.org/10.1002/anie.200460587.CrossRefGoogle Scholar
  3. 3.
    Theron J, Walker JA, Cloete TE. Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol. 2008;34:43–69.  https://doi.org/10.1080/10408410701710442.CrossRefGoogle Scholar
  4. 4.
    Kostal J, Mulchandani A, Chen W. Tunable biopolymers for heavy metal removal. Macromolecules. 2001;34:2257–61.  https://doi.org/10.1021/ma001973m.ADSCrossRefGoogle Scholar
  5. 5.
    Kostal J, Mulchandani A, Gropp KE, Chen W. A temperature responsive biopolymer for mercury remediation. Environ Sci Technol. 2003;37:4457–62.  https://doi.org/10.1021/es034210y.ADSCrossRefGoogle Scholar
  6. 6.
    Lagaron JM, Lopez-Rubio A. Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci Technol. 2011;22:611–7.  https://doi.org/10.1016/j.tifs.2011.01.007.CrossRefGoogle Scholar
  7. 7.
    Haugaard VK, et al. Potential food applications of biobased materials. An EU-Concerted Action Project Starch - Stärke. 2001;53:189–200.  https://doi.org/10.1002/1521-379X(200105)53:5<189::AID-STAR189>3.0.CO;2-3.CrossRefGoogle Scholar
  8. 8.
    Auras R, Harte B, Selke S. An overview of Polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.  https://doi.org/10.1002/mabi.200400043.CrossRefGoogle Scholar
  9. 9.
    Amass W, Amass A, Tighe B. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int. 1999;47:89–144.  https://doi.org/10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F.CrossRefGoogle Scholar
  10. 10.
    Nagarajan V, Mohanty AK, Misra M. Perspective on Polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng. 2016;4:2899–916.  https://doi.org/10.1021/acssuschemeng.6b00321.CrossRefGoogle Scholar
  11. 11.
    Sanchez-Garcia MD, Gimenez E, Lagaron JM. Novel PET nanocomposites of interest in food packaging applications and comparative barrier performance with biopolyester nanocomposites. J Plast Film Sheet. 2007;23:133–48.  https://doi.org/10.1177/8756087907083590.CrossRefGoogle Scholar
  12. 12.
    Ho M-p, Lau K-t, Wang H, Hui D. Improvement on the properties of Polylactic acid (PLA) using bamboo charcoal particles. Compos Part B. 2015;81:14–25.  https://doi.org/10.1016/j.compositesb.2015.05.048.CrossRefGoogle Scholar
  13. 13.
    Goh K, et al. Sandwich-architectured poly(lactic acid)–graphene composite food packaging films. ACS Appl Mater Interf. 2016;8:9994–10004.  https://doi.org/10.1021/acsami.6b02498.CrossRefGoogle Scholar
  14. 14.
    Marra A, Silvestre C, Duraccio D, Cimmino S. Polylactic acid/zinc oxide biocomposite films for food packaging application. Int J Biol Macromol. 2016;88:254–62.  https://doi.org/10.1016/j.ijbiomac.2016.03.039.CrossRefGoogle Scholar
  15. 15.
    Niu X, Liu Y, Song Y, Han J, Pan H. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in Polylactic acid/chitosan composite film for food packaging. Carbohydr Polym. 2018;183:102–9.  https://doi.org/10.1016/j.carbpol.2017.11.079.CrossRefGoogle Scholar
  16. 16.
    Urry DW, et al. Hydrophobicity scale for proteins based on inverse temperature transitions. Biopolymers. 1992;32:1243–50.  https://doi.org/10.1002/bip.360320913.CrossRefGoogle Scholar
  17. 17.
    Kostal J, et al. Customizable biopolymers for heavy metal remediation. J Nanopart Res. 2005;7:517–23.  https://doi.org/10.1007/s11051-005-5132-y.CrossRefGoogle Scholar
  18. 18.
    Prabhukumar G, Matsumoto M, Mulchandani A, Chen W. Cadmium removal from contaminated soil by tunable biopolymers. Environ Sci Technol. 2004;38:3148–52.  https://doi.org/10.1021/es035150z.ADSCrossRefGoogle Scholar
  19. 19.
    Lao UL, Chen A, Matsumoto MR, Mulchandani A, Chen W. Cadmium removal from contaminated soil by thermally responsive elastin (ELPEC20) biopolymers. Biotechnol Bioeng. 2007;98:349–55.  https://doi.org/10.1002/bit.21478.CrossRefGoogle Scholar
  20. 20.
    Cheng C, et al. Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. J Hazard Mater. 2013;263:467–78.  https://doi.org/10.1016/j.jhazmat.2013.09.065.CrossRefGoogle Scholar
  21. 21.
    Bui KV, Park D, Lee Y-C. Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers. 2017;9  https://doi.org/10.3390/polym9010021.
  22. 22.
    Hirano S, Seino H, Akiyama Y, Nonaka I. In: Gebelein CG, Dunn RL, editors. Progress in Biomedical Polymers. Cham: Springer; 1990. p. 283–90.CrossRefGoogle Scholar
  23. 23.
    Kumar MNVR. A review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.  https://doi.org/10.1016/S1381-5148(00)00038-9.CrossRefGoogle Scholar
  24. 24.
    Suh J-KF, Matthew HWT. Application of chitin-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21:2589–98.  https://doi.org/10.1016/S0142-9612(00)00126-5.CrossRefGoogle Scholar
  25. 25.
    Yan N, Chen X. Don't waste seafood waste. Nature. 2015;524:155–7.ADSCrossRefGoogle Scholar
  26. 26.
    Juang RS, Tseng RL, Wu FC, Lin SJ. Use of chitin and chitosan in lobster Shell wastes for color removal from aqueous solutions. J Environ Sci Health Part A: Environ Sci Eng Toxicol. 1996;31:325–38.  https://doi.org/10.1080/10934529609376360.CrossRefGoogle Scholar
  27. 27.
    Lasko CL, Hurst MP. An investigation into the use of chitosan for the removal of Soluble silver from industrial wastewater. Environ Sci Technol. 1999;33:3622–6.  https://doi.org/10.1021/es980443r.ADSCrossRefGoogle Scholar
  28. 28.
    Zeng D, Wu J, Kennedy JF. Application of a chitosan Flocculant to water treatment. Carbohydr Polym. 2008;71:135–9.  https://doi.org/10.1016/j.carbpol.2007.07.039.CrossRefGoogle Scholar
  29. 29.
    Ishii H, Koyama M, Mitani T. Removal of organic acids by highly swollen chitosan beads. J Environ Sci Health. Part A: Environ Sci Eng Toxicol. 1995;30:945–50.  https://doi.org/10.1080/10934529509376241.CrossRefGoogle Scholar
  30. 30.
    Bolto B, Soluble A. Polymers in water purification. Prog Polym Sci. 1995;20:987–1041.  https://doi.org/10.1016/0079-6700(95)00010-D.CrossRefGoogle Scholar
  31. 31.
    Chiou M-S, Ho P-Y, Li H-Y. Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes Pigments. 2004;60:69–84.  https://doi.org/10.1016/S0143-7208(03)00140-2.CrossRefGoogle Scholar
  32. 32.
    Crini G, Badot P-M. Application of chitosan, a natural Aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci. 2008;33:399–447.  https://doi.org/10.1016/j.progpolymsci.2007.11.001.CrossRefGoogle Scholar
  33. 33.
    Bacelo HAM, Santos SCR, Botelho CMS. Tannin-based biosorbents for environmental applications – a review. Chem Eng J. 2016;303:575–87.  https://doi.org/10.1016/j.cej.2016.06.044.CrossRefGoogle Scholar
  34. 34.
    Sánchez-Martín J, Beltrán-Heredia J, Gibello-Pérez P. Adsorbent biopolymers from tannin extracts for water treatment. Chem Eng J. 2011;168:1241–7.  https://doi.org/10.1016/j.cej.2011.02.022.CrossRefGoogle Scholar
  35. 35.
    Beltrán-Heredia J, Palo P, Sánchez-Martín J, Domínguez JR, González T. Natural adsorbents derived from tannin extracts for pharmaceutical removal in water. Ind Eng Chem Res. 2012;51:50–7.  https://doi.org/10.1021/ie201017t.CrossRefGoogle Scholar
  36. 36.
    Sánchez-Martín J, Beltrán-Heredia J, Delgado-Regaña A, Rodríguez-González MA, Rubio-Alonso F. Optimization of tannin rigid foam as adsorbents for wastewater treatment. Ind Crop Prod. 2013;49:507–14.  https://doi.org/10.1016/j.indcrop.2013.05.029.CrossRefGoogle Scholar
  37. 37.
    Ogata T, Morisada S, Oinuma Y, Seida Y, Nakano Y. Preparation of adsorbent for phosphate recovery from aqueous solutions based on condensed tannin gel. J Hazard Mater. 2011;192:698–703.  https://doi.org/10.1016/j.jhazmat.2011.05.073.CrossRefGoogle Scholar
  38. 38.
    Carpenter, A. W., de Lannoy, C.-F. & Wiesner, M. R. Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49, 5277–5287, doi: https://doi.org/10.1021/es506351r (2015).
  39. 39.
    Das H, Singh SK. Useful byproducts from cellulosic wastes of agriculture and food industry—a critical appraisal. Crit Rev Food Sci Nutr. 2004;44:77–89.  https://doi.org/10.1080/10408690490424630.CrossRefGoogle Scholar
  40. 40.
    Ahmad M, et al. Biochar as A sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19–33.  https://doi.org/10.1016/j.chemosphere.2013.10.071.ADSCrossRefGoogle Scholar
  41. 41.
    Abdul Khalil HPS, et al. Production and modification of Nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym. 2014;99:649–65.  https://doi.org/10.1016/j.carbpol.2013.08.069.CrossRefGoogle Scholar
  42. 42.
    Chirayil CJ, Mathew L, Thomas S. Review of recent research in Nano cellulose preparation from different lignocellulosic fibers. Rev Adv Mater Sci. 2014;37:20–8.Google Scholar
  43. 43.
    Brinchi L, Cotana F, Fortunati E, Kenny JM. Production of Nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym. 2013;94:154–69.  https://doi.org/10.1016/j.carbpol.2013.01.033.CrossRefGoogle Scholar
  44. 44.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–94.  https://doi.org/10.1039/C0CS00108B.CrossRefGoogle Scholar
  45. 45.
    Gatenholm P, Klemm D. Bacterial Nanocellulose as a renewable material for biomedical applications. MRS Bull. 2011;35:208–13.  https://doi.org/10.1557/mrs2010.653.CrossRefGoogle Scholar
  46. 46.
    Yu X, et al. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci. 2013;25:933–43.  https://doi.org/10.1016/S1001-0742(12)60145-4.CrossRefGoogle Scholar
  47. 47.
    Kardam A, Raj KR. Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals AU – Srivastava, Shalini. Int J Green Nanotechnol. 2012;4:46–53.  https://doi.org/10.1080/19430892.2012.654744.CrossRefGoogle Scholar
  48. 48.
    Singh K, Arora JK, Sinha TJM, Srivastava S. Functionalization of Nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: computational modeling approach. Clean Techn Environ Policy. 2014;16:1179–91.  https://doi.org/10.1007/s10098-014-0717-8.CrossRefGoogle Scholar
  49. 49.
    Korhonen JT, Kettunen M, Ras RHA, Ikkala O. Hydrophobic Nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces. 2011;3:1813–6.  https://doi.org/10.1021/am200475b.CrossRefGoogle Scholar
  50. 50.
    Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P. Ultralightweight and flexible Silylated Nanocellulose sponges for the selective removal of oil from water. Chem Mater. 2014;26:2659–68.  https://doi.org/10.1021/cm5004164.CrossRefGoogle Scholar
  51. 51.
    Zhu H, et al. Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr Polym. 2011;86:1558–64.  https://doi.org/10.1016/j.carbpol.2011.06.061.CrossRefGoogle Scholar
  52. 52.
    Cranston ED, et al. Determination of Young’s modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics. Biomacromolecules. 2011;12:961–9.  https://doi.org/10.1021/bm101330w.CrossRefGoogle Scholar
  53. 53.
    Gholampour A, Kiamahalleh MV, Tran DNH, Ozbakkaloglu T, Losic D. From graphene oxide to reduced graphene oxide: impact on the physiochemical and mechanical properties of graphene−cement composites. ACS Appl Mater Interfaces. 2017;9:43275–86.  https://doi.org/10.1021/acsami.7b16736.CrossRefGoogle Scholar
  54. 54.
    Papageorgiou DG, Kinloch IA, Young RJ. Graphene/elastomer nanocomposites. Carbon. 2015;95:460–84.  https://doi.org/10.1016/j.carbon.2015.08.055.CrossRefGoogle Scholar
  55. 55.
    Mittal G, Dhand V, Ree KY, Park SJ. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem. 2015;21:11–25.  https://doi.org/10.1016/j.jiec.2014.03.022.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Young-Chul Lee
    • 1
  • Ju-Young Moon
    • 2
  1. 1.Department of BioNano TechnologyGachon UniversitySeongnam-siRepublic of Korea
  2. 2.Department of Beauty Design ManagementHansung UniversitySeoulRepublic of Korea

Personalised recommendations