Advertisement

Computer-Aided Diagnosis System for Investigation and Detection of Epilepsy Using Machine Learning Techniques

  • J. NarenEmail author
  • A. B. Sarada Pyngas
  • S. Subhiksha
Conference paper
  • 25 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1087)

Abstract

Epilepsy, a neurological disorder seems to be very chronic and affects a large number of people. Epilepsy is the third most common disease among all other mental disorders whose identification and cure is very hard. In the proposed work, a thorough investigation of the various techniques employed in various papers pertaining to Epilepsy detection and cure using Machine Learning have been taken and analysed. Various EEG signal preprocessing techniques and machine learning classifiers used in many papers were analysed with samples and conclusion on preprocessing techniques combined with classifiers gives the most accurate prediction of the disorder for preliminary investigation. Various classifiers, namely SVM, Random Forest, Neural Network, Logistic Regression were used on the dataset. The Random Forest Classifier gave the most accurate result. The accuracy was 58.9%.

Keywords

EEG signal Seizure Classifiers Signal preprocessing Epilepsy 

References

  1. 1.
    P.E.H. Reynolds (n.d.), Epilepsy: The disorder 15–28Google Scholar
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    D. Dilber, J. Kaur, EEG based detection of Epilepsy by a mixed design approach, in 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (2016), pp. 1425–1428.  https://doi.org/10.1109/RTEICT.2016.7808067
  6. 6.
  7. 7.
    Wolfgang, EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29(3), 169–195 (1999)Google Scholar
  8. 8.
    A. Craig, Y. Tran, N. Wijesuriya, Regional brain wave activity changes associated with fatigue. Psychophysiology 1, 574–582 (2012)CrossRefGoogle Scholar
  9. 9.
    W. Klimesch, Controlled access to stored information. Trends Cogn. Sci. 16(12), 606–617 (2012).  https://doi.org/10.1016/j.tics.2012.10.007CrossRefGoogle Scholar
  10. 10.
    S. Halder, Neural mechanisms of brain–computer interface control. NeuroImage 55(4), 1779–1790 (2011)CrossRefGoogle Scholar
  11. 11.
    X. Jia, A. Kohn, Gamma rhythms in the brain. PLoS Biol. 9(4), 2–5 (2011).  https://doi.org/10.1371/journal.pbio.1001045CrossRefGoogle Scholar
  12. 12.
  13. 13.
    T.O. Ayodele, Types of machine learning algorithms. New Adv. Mach. Learn. 1–33 (2010)Google Scholar
  14. 14.
  15. 15.
  16. 16.
    A.Y. Ng, M.I. Jordan (n.d.), Regression and naive bayesGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.
  21. 21.
  22. 22.
    A.B. Shaik, S. Srinivasan, A brief survey on random forest ensembles in classification model, in International Conference on Innovative Computing and Communications (Springer, Singapore, 2019), pp. 253–260Google Scholar
  23. 23.
    M. Günay, T. Ensari, EEG signal analysis of patients with epilepsy disorder using machine learning techniques, in 2018 Electric Electronics, Computer Science, Biomedical Engineerings’ Meeting (EBBT) (IEEE, 2018)Google Scholar
  24. 24.
    J. Yoo, On-chip epilepsy detection: Where machine learning meets patient-specific healthcare, in 2017 International SoC Design Conference (ISOCC) (IEEE, 2017), pp. 146–147Google Scholar
  25. 25.
    H. Rajaguru, Time frequency analysis (dB2 and dB4) for Epilepsy classification with LDA classifier, (Icces), 708–711 (2017)Google Scholar
  26. 26.
    H. Rajaguru, Analysis of Adaboost classifier from compressed EEG features for epilepsy detection, (Iccmc), 981–984 (2017)Google Scholar
  27. 27.
    S. Badani, S. Saha, Detection of epilepsy based on discrete wavelet transform and Teager-Kaiser energy operator. 164–167 (2017)Google Scholar
  28. 28.
    Z. Laser, R.R. Reddy, K. Elleithy, Smartphone Application Development for Monitoring Epilepsy Seizure Detection Based on EEG Signal Classification (2017), pp. 83–87Google Scholar
  29. 29.
    Z. Laser, S. Shiva, V.N.R. Ayyalasomayajula, K. Elleithy, Epilepsy seizure detection using EEG signals, 162–167 (2017)Google Scholar
  30. 30.
    S.S. Rajagopalan, S. Bhardwaj, R. Panda, V.R. Reddam, C. Ganne, R. Kenchaiah, R.C. Mundlamuri, T. Kandavel, K.K. Majumdar, S. Parthasarathy, S. Sinha, Machine learning detects EEG microstate alterations in patients living with temporal lobe epilepsy. Seizure: Eur. J. Epilepsy 61(July), 8–13 (2018)  https://doi.org/10.1016/j.seizure.2018.07.007 CrossRefGoogle Scholar
  31. 31.
    B.C. Munsell, C. Wee, S.S. Keller, B. Weber, C. Elger, L.A.T. da Silva, T. Nesland, M. Styner, D. Shen, L. Bonilha, Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. NeuroImage 118, 219–230 (2015)  https://doi.org/10.1016/j.neuroimage.2015.06.00
  32. 32.
    E. Gleichgerrcht, B. Munsell, S. Bhatia, W.A. Vandergrift III, C. Rorden, C. McDonald, J. Edwards, R. Kuzniecky, L. Bonilha, Deep learning applied to whole‐brain connectome to determine seizure control after epilepsy surgery. Epilepsia 59(9), 1643–1654 (2018)CrossRefGoogle Scholar
  33. 33.
    E. Abdulhay, V. Elamaran, M. Chandrasekar, V.S. Balaji, K. Narasimhan, Automated diagnosis of epilepsy from EEG signals using ensemble learning approach 0, 1–8 (2017).  https://doi.org/10.1016/j.patrec.2017.05.021
  34. 34.
    P. Fergus, A. Hussain, D. Hignett, D. Al-jumeily, A machine learning system for automated whole-brain seizure detection. Appl. Comput. Inf. 12(1), 70–89 (2016).  https://doi.org/10.1016/j.aci.2015.01.001CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.SASTRA Deemed UniversityTirumalaisamudram, ThanjavurIndia

Personalised recommendations