Advertisement

Performance Comparison of Graphene Terahertz Antenna and Copper Terahertz Antenna

  • Subodh Kumar TripathiEmail author
  • Ajay Kumar
Conference paper
  • 22 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1086)

Abstract

Terahertz frequency, also called terahertz gap, ranges from 0.1 to 10 THz is the area of the most up-to-date research spectrum useful for wireless communication. In this paper, performance of terahertz antenna using graphene and copper patch are analyzed. MATLAB codes are used to characterize the properties of graphene and are applied to high-frequency electromagnetic software which is used for modeling and simulation of the proposed antenna. Paper highlights the use of counterpart of copper, i.e. graphene as a patch material in terahertz antenna and also shows the performance comparison of graphene-based terahertz antenna and copper-based terahertz antenna. Return loss, directivity, and gain of the proposed antenna are compared. Results analysis shows that graphene is better option for the design of terahertz antenna.

Keywords

Graphene Copper Terahertz frequency Terahertz antenna 

Notes

Acknowledgements

I convey my sincere thanks for the support provided by Thapar University, Patiala, Punjab, IKGPTU, Jalandhar, Punjab, India, IIT Indore, India and MIET, Meerut, UP, India. I also convey my sincere thanks to Dr. Mukesh Kumar, Associate professor, IIT, Indore, India for his kind support and guidance.

References

  1. 1.
    K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRefGoogle Scholar
  2. 2.
    P. Blake, E.W. Hill1, A.H.C. Neto, K.S. Novoselov, D. Jiang, R. Yang, T.J. Booth, A.K. Geim, Making grapheme visible. Appl. Phys. Lett. 91, 063124 (2007)Google Scholar
  3. 3.
    C. Stampfer, J. Güttinger, F. Molitor, D. Graf, T. Ihn, K. Ensslin, Tunable coulomb blockade in nano structured graphene. Appl. Phys. Lett. 92, 012102 (2008)Google Scholar
  4. 4.
    M. Tamagnone, J.S. Gomez-Diaz, J.R. Mosig, J. Perruisseau Carrier, Reconfigurable terahertz plasmonic antenna concept using a grapheme stack. Appl. Phys. Lett. 101, 214102 (2012).  https://doi.org/10.1063/1.4767338
  5. 5.
    J.S. Gomez-Diaz, J. Perruisseau Carrier, P. Sharma, A. Ionescu, Non-contact characterization of graphene surface impedance at micro and millimeter waves. J. Appl. Phys. 111, 114908 (2012)Google Scholar
  6. 6.
    H.S. Skulason, H.V. Nguyen, A. Guermoune, V. Sridharan, M. Siaj, C. Caloz, T. Szkopek, 110 GHz measurement of large-area graphene integrated in low-loss microwave structures. Appl. Phys. Lett. 99, 153504 (2011)Google Scholar
  7. 7.
    M. Dragoman, A.A. Muller, D. Dragoman, F. Coccetti, R. Plana, Terahertz antenna based on graphene. J. Appl. Phys. 107, 104313 (2010)CrossRefGoogle Scholar
  8. 8.
    I. Frigyes, J. Bito, B. Hedler, L.C. Horvath, in Applicability of the 50–90 GHz frequency bands in feeder networks, in Proceedings European Antennas Propagation Conf (Berlin, Germany, 2009 March), pp. 36–40Google Scholar
  9. 9.
    I.F. Akyildiz, M. Jornet, C. Han, Terahertz band: next frontier for wireless communication. Phys. Commun. 12, 16–32 (2014)CrossRefGoogle Scholar
  10. 10.
    N. Haider, A.G. YArovoy, Recent developments in reconfigurable and multiband antenna technology. Int. J. Antenna Propag. 2013, 869170 (2013)Google Scholar
  11. 11.
    J. Modelski, Y. Yashchyshyn, Semiconductor and ferroelectric antennas. in Proceedings of the Asia-Pacific Microwave Conference (APMC ’06) (2006 Dec), pp. 1052–1059Google Scholar
  12. 12.
    Y. Yashchyshyn, J. Marczewski, K. Derzakowski, J.W. Modelski, P.B. Grabiec, Development and investigation of an antenna system with reconfigurable aperture. IEEE Trans. Antenna Propag. 57(1), 2–8 (2009)Google Scholar
  13. 13.
    A.E. Fathy, A. Rosen, H.S. Owen et al., Silicon-based reconfigurable antenna concepts, analysis, implementation, and feasibility. IEEE Trans. Microw. Theory Tech. 51(6), 1650–1661 (2003)CrossRefGoogle Scholar
  14. 14.
    L. Liu, R.J. Langley, Liquid crystal tunable microstrip patch antenna. Electron. Lett. 44(20), 1179–1180 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Yashchyshyn, J. Modelski, Reconfigurable semiconductor antenna, in Proceedings of the 9th International Conference: The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM ’07) (2007 Feb), pp. 146–150Google Scholar
  16. 16.
    A. Gaebler, A. Moessinger, F. Goelden et al., Liquid crystal reconfigurable antenna concepts for space applications at microwave and millimeter waves. IEEE Trans. Antenna Propag. 2009 (2009)Google Scholar
  17. 17.
    J.R. Lima, Controlling the energy gap of graphene by Fermi velocity engineering. Phys. Lett. A 379(3), 179–182 (2015)CrossRefGoogle Scholar
  18. 18.
    G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103(6), 064302 (2008).  https://doi.org/10.1063/1.2891452CrossRefGoogle Scholar
  19. 19.
    J.M. Jornet, I.F. Akyildiz, Graphene based nano antennas for electromagnetic nano communications in the terahertz band. in Proceedings of the Fourth European Conference on Antennas and Propagation (Barcelona, Spain, 2010), pp. 1–5.  https://doi.org/10.1016/j.nancom.2010.04.001
  20. 20.
    G.W. Hanson, Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Appl. Phys. 103, 064302 (2008)Google Scholar
  21. 21.
    C.A. Balanis, Antenna Theory, Analysis and Design, 3rd edn. (Wiley Publications, 2011)Google Scholar
  22. 22.
    S. Anand, D.S. Kumar, R.J. Wu, M. Chavali, Graphene nano ribbon based terahertz antenna on polyimide substrates. Optik 125(2014), 5546–5549 (2014). ElsevierCrossRefGoogle Scholar
  23. 23.
    I. Llaster, C. Kremers, A. Cabellos-Aparicio, J.M. Jornet, E. Alarcon, D.N. Chigrin, Graphene-based nano-patch antenna for terahertz radiation. Photonics Nanostruct. Fundam. Appl. 10, 353–358 (2012)CrossRefGoogle Scholar
  24. 24.
    H.A. Abdulnabi, R.T. Hussiein, R.S. Fyath, Design and performance investigation of tunable UWB THz antenna based on graphene fractal artificial magnetic conductor. Int. J. Electron. Commun. Eng. & Technol. (IJECET) 6(9), 39–47 (2015)Google Scholar
  25. 25.
    S.K. Tripathi, A. Kumar, High gain highly directive graphene based terahertz antenna for wireless communication. I-Manag. J. Commun. Eng. Syst. 6(4) (2017 Aug–Oct).  https://doi.org/10.26634/jcs.6.4.13804
  26. 26.
    T. Zhou, Z. Cheng, H. Zhang, M. Le Berre, L. Militaru, F. Calmon, Miniaturized tunable terahertz antenna based on graphene. Microw. Opt. Technol. Lett. 56(8) (2014 Aug).  https://doi.org/10.1002/mop

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.IKGPTUJalandharIndia
  2. 2.ECE DepartmentBECTGurudaspurIndia

Personalised recommendations