Advertisement

Biocompatible Thermoresponsive Polymers: Property and Synthesis

  • Varnakumar Gayathri
  • Nagaraju Pentela
  • Debasis SamantaEmail author
Chapter
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

Thermoresponsive polymers are responsive to slight changes in temperatures. In many cases, particularly with N-isopropylacrylamide group as repeating unit, the temperature at which the change takes place falls in physiological range. Hence, such polymers can be used for biological applications, even though biocompatibility is major issue in many cases. There is no universal solution to this; however, copolymerization is one strategy to address the issue. Choice of polymerization process also emerges as critical standpoint in several cases. In this chapter, such issues have been discussed with special emphasis on lower critical solution temperature (LCST) of most polymers. In certain cases, polymers with upper critical solution temperature (UCST) have been described briefly. Finally, the description along with schematic representation of preparation of various biocompatible thermoresponsive polymers using various controlled living radical polymerization techniques has been presented with references (total 86 references).

Keywords

Thermoresponsive Biocompatible RAFT ATRP polymers 

Abbreviations

PVCa

poly(n-vinyl caprolactam)

PMVE

poly(methyl vinyl ether)

PEtOx

poly(n-ethyl oxazoline)

CLRP

controlled living radical polymerization

ATRP

atom transfer radical polymerization

RAFT

reversible addition-fragmentation chain transfer polymerization

NMP

nitroxide mediated polymerization

LCST

lower critical solution temperature

UCST

upper critical solution temperature

PDI

polydispersity index

NIPAM/NIPAAm/NIPAm/NIPAAM

N-isopropylacrylamide

PNIPAM/PNIPAAm/ PNIPAm/PNIPAAM

poly(n-isopropylacrylamide)

PLL

poly(l-lysine)

VP

vinyl pyridine

PAM

polyacrylamide

PHB

poly[(r)-3-hydroxybutyrate]

HMTETA

hexamethyltriethylenetetramine

PS

polystyrene

EBiB

ethyl 2-bromoisobutyrate

DCM

dichloromethane

DMF

n,n-dimethylformamide

PEG

polyethylene glycol

PCL

polycaprolactone

PCLDMA

polycaprolactonedimethacrylate

Me6TREN

tris [2-(dimethylamino)ethyl]amine

DMSO

dimethyl sulfoxide

PPO

poly(propylene oxide)

MPC

2-methacryloyloxyethylphosphorylcholine

PMPC

poly(2-methacryloyloxyethylphosphorylcholine)

bpy

2,2’-bipyridine

Me4Cyclam

1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane

TsOH

ρ-toluenesulfonic acid

DEA

2-(1,3-dioxan-2-yloxy)ethyl acrylate

DMDEA

2-(5,5-dimethyl-1,3-dioxan-2-yloxy) ethyl acrylate

OEGA

oligo(ethylene glycol) acrylate

DE-ATRP

deactivation enhanced atom transfer radical polymerization

PEGMEMA

poly(ethylene glycol) methyl ether methylacrylate

PPGMA

poly(propylene glycol) methacrylate

EGDMA

ethylene glycol dimethacrylate

poly(A-Pro-OMe)

poly(n-acryloyl-l-prolinemethylester)

BDB

benzyl dithiobenzoate

CTA

chain transfer agent

DMA

n,n-dimethylacrylamide

AIBN

azobisisobutyronitrile

ADMO

(n-acryloyl-2,2-dimethyl-1,3-oxazolidine)

PADMO

poly(n-acryloyl-2,2-dimethyl-1,3-oxazolidine)

HEMA

2-hydroxylethyl methacrylate

BSPA

benzylsulfanylthiocarbonylsulfanylpropionic acid

PAGA

poly(acryloyl glucosamine)

EIPPMMA

4-(1-ethyl-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl) phenyl methacrylate]

PVPhol

poly(vinylphenol)

FITC

fluorescein isothiocyanate

PDS

pyridylsulfide

DTT

dithiothreitol

OEG

oligoethyleneglycol

VCL

vinylcaprolactam

AA

acrylic acid

DODAB

dimethyldioctadecylammonium bromide

DBTTC

dibenzyltrithiocarbonate

EGDMA

ethyleneglycoldimethacrylate

MBA

N,N’-methylenebisacrylamide

PHMPA

poly((n-2-hydroxyproply)-methacrylamide)

P(OEG-A)

poly(oligoethylene glycol methyl ether acrylate)

P(OEG-MA)

poly-(oligoethylene glycol methyl ether methacrylate)

CDTB

cyanopentanoic acid dithiobenzoate

BSPA

3-(benzyl sulfanylthiocarbonylsulfanyl)-propionic acid

CDB

cumyldithiobenzoate

PPEGMAxTTC

poly[poly(ethylene glycol) methyl ether methacrylate]-trithiocarbonate

DT

dithioester

MEO2MA

poly(2-(2-methoxyethoxy)ethyl methacrylate

PVPip

poly(n-vinylpiperidone)

VAc

vinylacetate

LDH

lactate dehydrogenase

PNASME

poly(n-acryloylsarcosine methyl ester)

C2NVP

3-ethyl-1-vinyl-2-pyrrolidone

NVP

n-vinylpyrrolidone

MHEX

s-(1-methyl-4-hydroxyethyl acetate) o-ethyl xanthate

Mw

molecular weight

MADIX

Macromolecular design by interchange of xanthate

MeO2VAc

oligo (ethylene glycol) vinyl acetate

ABCN

1,1’-azobis-(cyclohexanocarbonitrile)

BMDO

5,6-benzo-2-methylene-1,3-dioxepane

MDO

2-methylene-1,3-dioxepane

TEMPO

(2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl

MePEGMA

poly(ethylene glycol) methyl ether methacrylate

AN

acrylonitrile

HEA

2-hydroxyethyl acrylate

FRP

free radical polymerization

DEGEA

diethylene glycol ethyl ether acrylate

DHHA/PDHHA

dihydroxyhexyl acrylate/poly(dihydroxyhexyl acrylate)

MA

methyl acrylate

OEGMA

oligo(ethylene glycol) methyl ether methacrylate

POEGMA

poly[oligo(ethylene glycol) methyl ether methacrylate]

OEGMEAs

oligo(ethylene glycol) methyl ether amines

CPADB

4-cyano-4-((phenylcarbonothioyl)thio)pentanoic acid

PFP(M)A

pentafluorophenyl(meth)acrylate

PFPA

pentafluorophenyl acrylate

MEO2MAM

diethylene glycol methacrylamide

MEO2AM

diethylene glycol acrylamide

mPEG

methoxy poly(ethylene glycol)

AAm/AM

acrylamide

APEG

α-acryloyl-ω-methoxypoly(ethyleneglycol)

CMC

critical micelle concentration

DOX

doxorubicin

PVP

polyvinylpyrrolidone

CMPC

cyanomethyl methyl(4-pyridyl)carbamodithioate

LbL

layer by layer

OEtOxA

oligo(2-ethyl-2-oxazoline)acrylate

TA

tannic acid

CROP

cationic ring-opening polymerization

P[VBTP][Cl]

poly(triphenyl-4-vinylbenzylphosphonium chloride)

P[VBuIm][Br]

poly(3-n-butyl-1-vinylimidazolium bromide)

P2VP

poly (2-vinylpyridine)

PHEA

poly(2-hydroxyethyl acrylate)

PEA

poly(ethyl acrylate)

PEGMA

poly(ethylene glycol) methacrylate

Hex

Hexylamine

References

  1. 1.
    Teotia AK, Sami H, Kumar A (2015) Thermo-responsive polymers: structure and design of smart materials. In: Zhang Z (eds) Switchable and responsive surfaces and materials for biomedical applications. Woodhead Publishing, pp 3–43.  https://doi.org/10.1016/c2013-0-16356-8
  2. 2.
    James HP, John R, Alex A, Anoop KR (2014) Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharmacol Sin B 4:120–127.  https://doi.org/10.1016/j.apsb.2014.02.005CrossRefGoogle Scholar
  3. 3.
    Ilmain F, Tanaka T, Kokufuta E (1991) Volume transition in a gel driven by hydrogen bonding. Nature 349:400–401.  https://doi.org/10.1038/349400a0CrossRefGoogle Scholar
  4. 4.
    Ward MA, Georgiou TK (2011) Thermoresponsive polymers for biomedical applications. Polymers 3:1215–1242.  https://doi.org/10.3390/polym3031215CrossRefGoogle Scholar
  5. 5.
    Zhu YC, Batchelor R, Lowe AB, Roth PJ (2016) Design of thermoresponsive polymers with aqueous LCST, UCST, or both: modification of a reactive poly(2-vinyl-4,4-dimethylazIactone) Scaffold. Macromolecules 49:672–680.  https://doi.org/10.1021/acs.macromol.5b02056CrossRefGoogle Scholar
  6. 6.
    Southall NT, Dill KA, Haymet ADJ (2002) A view of the hydrophobic effect. J Phys Chem B 106:521–533.  https://doi.org/10.1021/jp015514eCrossRefGoogle Scholar
  7. 7.
    Aguilar MR, San Roman J (2014) Introduction to smart polymers and their applications. In: Aguilar MR, San Roman J (eds) Smart polymers and their applications. Woodhead Publishing, pp 1–11.  https://doi.org/10.1533/9780857097026.1
  8. 8.
    Hoffman AS, Stayton PS, Bulmus V, Chen G, Chen J, Cheung C, Chilkoti A, Ding Z, Dong L, Fong R (2000) Really smart bioconjugates of smart polymers and receptor proteins. J Biomed Mater Res 52:577–586.  https://doi.org/10.1002/1097-4636(20001215)52:4%3c577:aid-jbm1%3e3.0.co;2-5CrossRefGoogle Scholar
  9. 9.
    Liu RX, Fraylich M, Saunders BR (2009) Thermoresponsive copolymers: from fundamental studies to applications. Colloid Polym Sci 287:627–643.  https://doi.org/10.1007/s00396-009-2028-xCrossRefGoogle Scholar
  10. 10.
    Feil H, Bae YH, Feijen J, Kim SW (1993) Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers. Macromolecules 26:2496–2500.  https://doi.org/10.1021/ma00062a016CrossRefGoogle Scholar
  11. 11.
    Shimada N, Ino H, Maie K, Nakayama M, Kano A, Maruyama A (2011) Ureido-derivatized polymers based on both poly(allylurea) and poly(l-citrulline) exhibit UCST-type phase transition behavior under physiologically relevant conditions. Biomacromol 12:3418–3422.  https://doi.org/10.1021/bm2010752CrossRefGoogle Scholar
  12. 12.
    Plamper FA, Schmalz A, Ballauff M, Muller AHE (2007) Tuning the thermoresponsiveness of weak polyelectrolytes by pH and light: lower and upper critical-solution temperature of poly(N, N-dimethylaminoethyl methacrylate). J Am Chem Soc 129:14538–14539.  https://doi.org/10.1021/ja074720iCrossRefGoogle Scholar
  13. 13.
    Wu DC, Liu Y, He CB (2008) Thermal- and pH-responsive degradable polymers. Macromolecules 41:18–20.  https://doi.org/10.1021/ma7024896CrossRefGoogle Scholar
  14. 14.
    Fujishige S, Kubota K, Ando I (1989) Phase-transition of aqueous-solutions of poly(N-Isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313.  https://doi.org/10.1021/j100345a085CrossRefGoogle Scholar
  15. 15.
    Pentela N, Ayyappan VG, Krishnamurthy M, Boopathi AA, Rainu S, Sampath S, Mandal AB, Samanta D (2017) A comparative study of pH-responsive microcapsules from different nanocomposites. Green Mater 5:53–62.  https://doi.org/10.1680/jgrma.16.00023CrossRefGoogle Scholar
  16. 16.
    Pentela N, Duraipandy N, Sainath N, Parandhaman T, Kiran MS, Das SK, Jaisankar SN, Samanta D (2018) Microcapsules from diverse polyfunctional materials: synergistic interactions for a sharp response to pH changes. New J Chem 42:8366–8373.  https://doi.org/10.1039/C7NJ03744ACrossRefGoogle Scholar
  17. 17.
    Winnik FM (1990) Phase transition of aqueous poly-(N-isopropylacrylamide) solutions: a study by non-radiative energy transfer. Polymer 31:2125–2134.  https://doi.org/10.1016/0032-3861(90)90085-DCrossRefGoogle Scholar
  18. 18.
    Wang XH, Wu C (1999) Light-scattering study of coil-to-globule transition of a poly(N-isopropylacrylamide) chain in deuterated water. Macromolecules 32:4299–4301.  https://doi.org/10.1021/ma9902450CrossRefGoogle Scholar
  19. 19.
    Cao Y, Zhu XX, Luo JT, Liu HY (2007) Effects of substitution groups on the RAFT polymerization of N-Alkylacrylamides in the preparation of thermosensitive block copolymers. Macromolecules 40:6481–6488.  https://doi.org/10.1021/ma0628230CrossRefGoogle Scholar
  20. 20.
    Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci A 2:1441–1455.  https://doi.org/10.1080/10601326808051910
  21. 21.
    Kobayashi M, Ishizone T, Nakahama S (2000) Synthesis of highly isotactic poly(N, N-diethylacrylamide) by anionic polymerization with grignard reagents and diethylzinc. J Polym Sci A 38:4677–4685.  https://doi.org/10.1002/1099-0518(200012)38:1+%3c4677:AID-POLA70%3e3.0.CO;2-%23CrossRefGoogle Scholar
  22. 22.
    Christova D, Velichkova R, Loos W, Goethals EJ, Du Prez F (2003) New thermo-responsive polymer materials based on poly (2-ethyl-2-oxazoline) segments. Polymer 44:2255–2261.  https://doi.org/10.1016/s0032-3861(03)00139-3CrossRefGoogle Scholar
  23. 23.
    Jiang J, Tong X, Zhao Y (2005) A new design for light-breakable polymer micelles. J Am Chem Soc 127:8290–8291.  https://doi.org/10.1021/ja0521019CrossRefGoogle Scholar
  24. 24.
    Zhao C, Zhuang X, He C, Chen X, Jing X (2008) Synthesis of novel thermo- and pH-responsive poly(l-lysine)-based copolymer and its micellization in water. Macromol Rapid Commun 29:1810–1816.  https://doi.org/10.1002/marc.200800494CrossRefGoogle Scholar
  25. 25.
    Karir T, Sarma HD, Samuel G, Hassan PA, Padmanabhan D, Venkatesh M (2013) Preparation and evaluation of radioiodinated thermoresponsive polymer based on poly(N-isopropyl acrylamide) for radiotherapy. J Appl Polym Sci 130:860–868.  https://doi.org/10.1002/app.39235CrossRefGoogle Scholar
  26. 26.
    Hong MC, Choi MC, Chang YW, Lee Y, Kim J, Rhee H (2012) Palladium nanoparticles on thermoresponsive hydrogels and their application as recyclable Suzuki-Miyaura coupling reaction catalysts in water. Adv Synth Catal 354:1257–1263.  https://doi.org/10.1002/adsc.201100965CrossRefGoogle Scholar
  27. 27.
    Fan Y, Boulif N, Picchioni F (2018) Thermo-responsive starch-g-(PAM-co-PNIPAM): controlled synthesis and effect of molecular components on solution rheology. Polymers 10:92.  https://doi.org/10.3390/polym10010092CrossRefGoogle Scholar
  28. 28.
    Sun S, Wu P (2011) Infrared spectroscopic insight into hydration behavior of poly(n-vinylcaprolactam) in water. J Phys Chem B 115:11609–11618.  https://doi.org/10.1021/jp2071056CrossRefGoogle Scholar
  29. 29.
    Ramos J, Imaz A, Forcada J (2012) Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym Chem 3:852–856.  https://doi.org/10.1039/C2PY00485BCrossRefGoogle Scholar
  30. 30.
    Jones MW, Gibson MI, Mantovanib G, Haddletona DM (2011) Tunable thermo-responsive polymer-protein conjugates via a combination of nucleophilic thiol-ene “click” and SET-LRP. Polym Chem 2:572–574.  https://doi.org/10.1039/C0PY00329HCrossRefGoogle Scholar
  31. 31.
    Chilkoti A, Dreher MR, Meyer DE, Raucher D (2002) Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev 54:613–630.  https://doi.org/10.1016/s0169-409x(02)00041-8CrossRefGoogle Scholar
  32. 32.
    Enzenberg A, Laschewsky A, Boeffel C, Wischerhoff E (2016) Influence of the near molecular vicinity on the temperature regulated fluorescence response of poly(N-vinylcaprolactam). Polymers 8:109–129.  https://doi.org/10.3390/polym8040109CrossRefGoogle Scholar
  33. 33.
    Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly (N-vinylcaprolactam). Biomaterials 26:3055–3064.  https://doi.org/10.1016/j.biomaterials.2004.09.008CrossRefGoogle Scholar
  34. 34.
    Chee CK, Rimmer S, Soutar I, Swanson L (2006) Fluorescence investigations of the conformational behaviour of poly(N-vinylcaprolactam). React Funct Polym 66:1–11.  https://doi.org/10.1016/j.reactfunctpolym.2005.07.007CrossRefGoogle Scholar
  35. 35.
    Moerkerke R, Meeussen F, Koningsveld R, Berghmans H, Mondelaers W, Schacht E, Dušek K, Šolc K (1998) Phase transitions in swollen networks. 3. Swelling behavior of radiation cross-linked poly(vinyl methyl ether) in water. Macromolecules 31:2223–2229.  https://doi.org/10.1021/ma971512+CrossRefGoogle Scholar
  36. 36.
    Zhang WZ, Chen XD, Luo WA, Yang J, Zhang MQ, Zhu FM (2009) Study of phase separation of poly(vinyl methyl ether) aqueous solutions with rayleigh scattering technique. Macromolecules 42:1720–1725.  https://doi.org/10.1021/ma802671aCrossRefGoogle Scholar
  37. 37.
    Chiu TT (1986) Poly(2-ethy-2-oxazoline): a new water-and organic soluble adhesive. Water Soluble Polym 213:425–433.  https://doi.org/10.1021/ba-1986-0213.ch023CrossRefGoogle Scholar
  38. 38.
    Chen CH, Wilson J, Chen W, Davis RM, Riffle JS (1994) A light-scattering study of poly (2-alkyl-2-oxazoline)s: effect of temperature and solvent type. Polymer 35:3587–3591.  https://doi.org/10.1016/0032-3861(94)90532-0CrossRefGoogle Scholar
  39. 39.
    Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670.  https://doi.org/10.1016/j.addr.2006.09.020CrossRefGoogle Scholar
  40. 40.
    Hoogenboom R, Schlaad H (2011) Bioinspired poly (2-oxazoline) s. Polymers 3:467–488.  https://doi.org/10.3390/polym3010467CrossRefGoogle Scholar
  41. 41.
    Aoki T, Kawashima M, Katono H, Sanui K, Ogata N, Okano T, Sakurai Y (1994) Temperature-responsive interpenetrating polymer networks constructed with poly(acrylic acid) and poly(N, N-dimethylacrylamide). Macromolecules 27:947–952.  https://doi.org/10.1021/ma00082a010CrossRefGoogle Scholar
  42. 42.
    York AW, Kirkland SE, McCormick CL (2008) Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Adv Drug Deliv Rev 60:1018–1036.  https://doi.org/10.1016/j.addr.2008.02.006CrossRefGoogle Scholar
  43. 43.
    Matyjaszewski K, Patten TE, Xia JH (1997) Controlled/“living” radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene. J Am Chem Soc 119:674–680.  https://doi.org/10.1021/ja963361gCrossRefGoogle Scholar
  44. 44.
    Patten TE, Matyjaszewski K (1999) Copper(I)-catalyzed atom transfer radical polymerization. Acc Chem Res 32:895–903.  https://doi.org/10.1021/ar9501434CrossRefGoogle Scholar
  45. 45.
    Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990.  https://doi.org/10.1021/cr940534gCrossRefGoogle Scholar
  46. 46.
    Mishra V, Kumar R (2012) Living radical polymerization: a review. J Sci Res 56:141–176Google Scholar
  47. 47.
    Arslan H (2012) Block and graft copolymerization by controlled/living radical polymerization methods. In: Gomes ADS (eds) Polymerization. InTechOpen,, pp 279–320.  https://doi.org/10.5772/45970
  48. 48.
    Haddleton DM, Crossman MC (1997) Synthesis of methacrylic multi-arm star copolymers by “arm-first” group transfer polymerisation. Macromol Chem Phys 198:871–881.  https://doi.org/10.1002/macp.1997.021980317CrossRefGoogle Scholar
  49. 49.
    Matyjaszewski K (2005) Macromolecular engineering: from rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties. Prog Polym Sci 30:858–875.  https://doi.org/10.1016/j.progpolymsci.2005.06.004CrossRefGoogle Scholar
  50. 50.
    Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146.  https://doi.org/10.1016/j.progpolymsci.2006.11.002CrossRefGoogle Scholar
  51. 51.
    Wever DAZ, Raffa P, Picchioni F, Broekhuis AA (2012) Acrylamide homopolymers and acrylamide-N-isopropylacrylamide block copolymers by atomic transfer radical polymerization in water. Macromolecules 45:4040–4045.  https://doi.org/10.1021/ma3006125CrossRefGoogle Scholar
  52. 52.
    Fischer H (1986) Unusual selectivities of radical reactions by internal suppression of fast modes. J Am Chem Soc 108:3925–3927.  https://doi.org/10.1021/ja00274a012CrossRefGoogle Scholar
  53. 53.
    Wang Y, Zhong MJ, Zhang YZ, Magenau AJD, Matyjaszewski K (2012) Halogen conservation in atom transfer radical polymerization. Macromolecules 45:8929–8932.  https://doi.org/10.1021/ma3018958CrossRefGoogle Scholar
  54. 54.
    Loh XJ, Zhang ZX, Wu YL, Lee TS, Li J (2009) Synthesis of novel biodegradable thermoresponsive triblock copolymers based on poly(R)-3-hydroxybutyrate and poly(N-isopropylacrylamide) and their formation of thermoresponsive micelles. Macromolecules 42:194–202.  https://doi.org/10.1021/ma8019865CrossRefGoogle Scholar
  55. 55.
    Shinde VS, Girme MR, Pawar VU (2011) Thermoresponsive polystyrene-b-poly (N-isopropylacrylamide) copolymers by atom transfer radical polymerization. Indian J Chem 50A:781–787Google Scholar
  56. 56.
    Quan ZL, Zhu KZ, Knudsen KD, Nystrom B, Lund R (2013) Tailoring the amphiphilicity and self-assembly of thermosensitive polymers: end-capped PEG-PNIPAAM block copolymers. Soft Matter 9:10768–10778.  https://doi.org/10.1039/C3SM51945GCrossRefGoogle Scholar
  57. 57.
    Galperin A, Long TJ, Garty S, Ratner BD (2013) Synthesis and fabrication of a degradable poly(N-isopropyl acrylamide) scaffold for tissue engineering applications. J Biomed Mater Res A 101:775–786.  https://doi.org/10.1002/jbm.a.34380CrossRefGoogle Scholar
  58. 58.
    Li CM, Buurma NJ, Haq I, Turner C, Armes SP, Castelletto V, Hamley IW, Lewis AL (2005) Synthesis and characterization of biocompatible, thermoresponsive ABC and ABA triblock copolymer gelators. Langmuir 21:11026–11033.  https://doi.org/10.1021/la0515672CrossRefGoogle Scholar
  59. 59.
    Qiao ZY, Du FS, Zhang R, Liang DH, Li ZC (2010) Biocompatible thermoresponsive polymers with pendent oligo(ethylene glycol) chains and cyclic ortho ester groups. Macromolecules 43:6485–6494.  https://doi.org/10.1021/ma101090gCrossRefGoogle Scholar
  60. 60.
    Tai HY, Wang WX, Vermonden T, Heath F, Hennink WE, Alexander C, Shakesheff KM, Howdle SM (2009) Thermoresponsive and photocrosslinkable PEGMEMA-PPGMA-EGDMA copolymers from a one-step ATRP synthesis. Biomacromol 10:822–828.  https://doi.org/10.1021/bm801308qCrossRefGoogle Scholar
  61. 61.
    Mori H, Iwaya H, Nagai A, Endo T (2005) Controlled synthesis of thermoresponsive polymers derived from l-proline via RAFT polymerization. Chem Commun 4872–4874.  https://doi.org/10.1039/b509212d
  62. 62.
    Cui QL, Wu FP, Wang EJ (2011) Thermosensitive behavior of poly(ethylene glycol)-based block copolymer (PEG-b-PADMO) controlled via self-assembled microstructure. J Phys Chem B 115:5913–5922.  https://doi.org/10.1021/jp200659uCrossRefGoogle Scholar
  63. 63.
    Zhu JL, Zhang XZ, Cheng H, Li YY, Cheng SX, Zhuo RX (2007) Synthesis and characterization of well-defined, amphiphilic poly(N-isopropylacrylamide)-b-2-hydroxyethyl methacrylate-poly(epsilon-caprolactone) (n) graft copolymers by RAFT polymerization and macromonomer method. J Polym Sci A 45:5354–5364.  https://doi.org/10.1002/pola.22280CrossRefGoogle Scholar
  64. 64.
    Zhang L, Bernard J, Davis TP, Barner-Kowollik C, Stenzel MH (2008) Acid-degradable core-crosslinked micelles prepared from thermosensitive glycopolymers synthesized via RAFT polymerization. Macromol Rapid Commun 29:123–129.  https://doi.org/10.1002/marc.200700663CrossRefGoogle Scholar
  65. 65.
    Li YY, Cheng H, Zhu JL, Yuan L, Dai Y, Cheng SX, Zhang XZ, Zhuo RX (2009) Temperature- and pH-sensitive multicolored micellar complexes. Adv Mater 21:2402–2406.  https://doi.org/10.1002/adma.200803770CrossRefGoogle Scholar
  66. 66.
    Ryu JH, Chacko RT, Jiwpanich S, Bickerton S, Babu RP, Thayumanavan S (2010) Self-cross-linked polymer nanogels: a versatile nanoscopic drug delivery platform. J Am Chem Soc 132:17227–17235.  https://doi.org/10.1021/ja1069932CrossRefGoogle Scholar
  67. 67.
    Aguirre G, Ramos J, Heuts JPA, Forcada J (2014) Biocompatible and thermo-responsive nanocapsule synthesis through vesicle templating. Polym Chem 5:4569–4579.  https://doi.org/10.1039/c4py00297kCrossRefGoogle Scholar
  68. 68.
    Pissuwan D, Boyer C, Gunasekaran K, Davis TP, Bulmus V (2010) In vitro cytotoxicity of RAFT polymers. Biomacromol 11:412–420.  https://doi.org/10.1021/bm901129xCrossRefGoogle Scholar
  69. 69.
    Shen WQ, Chang YL, Liu GY, Wang HF, Cao AN, An ZS (2011) Biocompatible, antifouling, and thermosensitive core-shell nanogels synthesized by RAFT aqueous dispersion polymerization. Macromolecules 44:2524–2530.  https://doi.org/10.1021/ma200074nCrossRefGoogle Scholar
  70. 70.
    Ieong NS, Redhead M, Bosquillon C, Alexander C, Kelland M, O’Reilly RK (2011) The missing lactam-thermoresponsive and biocompatible poly(N-vinylpiperidone) polymers by xanthate-mediated RAFT polymerization. Macromolecules 44:886–893.  https://doi.org/10.1021/ma1026466CrossRefGoogle Scholar
  71. 71.
    Chen SL, Wang K, Zhang WQ (2017) A new thermoresponsive polymer of poly(N-acryloylsarcosine methyl ester) with a tunable LCST. Polym Chem 8:3090–3101.  https://doi.org/10.1039/c7py00274bCrossRefGoogle Scholar
  72. 72.
    Huang YS, Chen JK, Chen T, Huang CF (2017) Synthesis of PNVP-bzased copolymers with tunable thermosensitivity by sequential reversible addition-fragmentation chain transfer copolymerization and ring-opening polymerization. Polymers 9:231–244.  https://doi.org/10.3390/polym9060231CrossRefGoogle Scholar
  73. 73.
    Hedir GG, Arno MC, Langlais M, Husband JT, O’Reilly RK, Dove AP (2017) Poly(oligo(ethylene glycol) vinyl acetate)s: a versatile class of thermoresponsive and biocompatible polymers. Angew Chem 56:9178–9182.  https://doi.org/10.1002/ange.201703763CrossRefGoogle Scholar
  74. 74.
    Chenal M, Mura S, Marchal C, Gigmes D, Charleux B, Fattal E, Couvreur P, Nicolas J (2010) Facile synthesis of innocuous comb-shaped polymethacrylates with peg side chains by nitroxide-mediated radical polymerization in hydroalcoholic solutions. Macromolecules 43:9291–9303.  https://doi.org/10.1021/ma101880mCrossRefGoogle Scholar
  75. 75.
    Popescu D, Hoogenboom R, Keul H, Moeller M (2010) Thermoresponsive polyacrylates obtained via a cascade of enzymatic transacylation and FRP or NMP. Polym Chem 1:878–890.  https://doi.org/10.1039/C0PY00051ECrossRefGoogle Scholar
  76. 76.
    Tian HY, Yan JJ, Wang D, Gu C, You YZ, Chen XS (2011) Synthesis of thermo-responsive polymers with both tunable UCST and LCST. Macromol Rapid Commun 32:660–664.  https://doi.org/10.1002/marc.201000713CrossRefGoogle Scholar
  77. 77.
    Roth PJ, Jochum FD, Theato P (2011) UCST-type behavior of poly oligo(ethylene glycol) methyl ether methacrylate (POEGMA) in aliphatic alcohols: solvent, co-solvent, molecular weight, and end group dependences. Soft Matter 7:2484–2492.  https://doi.org/10.1039/C0SM01324BCrossRefGoogle Scholar
  78. 78.
    Chua GBH, Roth PJ, Duong HTT, Davis TP, Lowe AB (2012) Synthesis and thermoresponsive solution properties of poly oligo(ethylene glycol) (meth)acrylamides: biocompatible peg analogues. Macromolecules 45:1362–1374.  https://doi.org/10.1021/ma202700yCrossRefGoogle Scholar
  79. 79.
    Huang G, Li H, Feng ST, Li XQ, Tong GQ, Liu J, Quan CY, Jiang Q, Zhang C, Li ZP (2015) Self-assembled UCST-type micelles as potential drug carriers for cancer therapeutics. Macromol Chem Phys 216:1014–1023.  https://doi.org/10.1002/macp.201400546CrossRefGoogle Scholar
  80. 80.
    Palanisami A, Sukhishvili SA (2018) Swelling transitions in layer-by-layer assemblies of UCST block copolymer micelles. Macromolecules 51:3467–3476.  https://doi.org/10.1021/acs.macromol.8b00519CrossRefGoogle Scholar
  81. 81.
    Jana S, Biswas Y, Anas M, Saha A, Mandal TK (2018) Poly oligo(2-ethyl-2-oxazoline)acrylate-based poly(ionic liquid) random copolymers with coexistent and tunable lower critical solution temperature- and upper critical solution temperature-type phase transitions. Langmuir 34:12653–12663.  https://doi.org/10.1021/acs.langmuir.8b03022CrossRefGoogle Scholar
  82. 82.
    Murugan P, Krishnamurthy M, Jaisankar SN, Samanta D, Mandal AB (2015) Controlled decoration of the surface with macromolecules: polymerization on a self-assembled monolayer (SAM). Chem Soc Rev 44:3212–3243.  https://doi.org/10.1039/C4CS00378KCrossRefGoogle Scholar
  83. 83.
    Feng C, Li YJ, Yang D, Li YG, Hu JH, Zhai SJ, Lu GL, Huang XY (2010) Synthesis of well-defined PNIPAM-b-(PEA-g-P2VP) double hydrophilic graft copolymer via sequential SET-LRP and ATRP and its “schizophrenic” micellization behavior in aqueous media. J Polym Sci A 48:15–23.  https://doi.org/10.1002/pola.23716CrossRefGoogle Scholar
  84. 84.
    Li N, Qi L, Shen Y, Li YP, Chen Y (2013) Thermoresponsive oligo(ethylene glycol)-based polymer brushes on polymer monoliths for all-aqueous chromatography. ACS Appl Mater Interfaces 5:12441–12448.  https://doi.org/10.1021/am403510gCrossRefGoogle Scholar
  85. 85.
    Riachi C, Schuwer N, Klok HA (2009) Degradable polymer brushes prepared via surface-initiated controlled radical polymerization. Macromolecules 42:8076–8081.  https://doi.org/10.1021/ma901537xCrossRefGoogle Scholar
  86. 86.
    Andruzzi L, Senaratne W, Hexemer A, Sheets ED, Ilic B, Kramer EJ, Baird B, Ober CK (2005) Oligo(ethylene glycol) containing polymer brushes as bioselective surfaces. Langmuir 21:2495–2504.  https://doi.org/10.1021/la047574sCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Varnakumar Gayathri
    • 1
  • Nagaraju Pentela
    • 1
  • Debasis Samanta
    • 1
    Email author
  1. 1.Polymer Science and Technology DepartmentCSIR-Central Leather Research InstituteChennaiIndia

Personalised recommendations