ZnO/Pb(Zr,Ti)O3 Gate Structure Ferroelectric FETs

  • Yukihiro KanekoEmail author
Part of the Topics in Applied Physics book series (TAP, volume 131)


We have developed a ferroelectric-gate field-effect transistor (FeFET) composed of heteroepitaxially stacked oxide materials. A semiconductor film of ZnO, a ferroelectric film of Pb(Zr,Ti)O3 (PZT), and a bottom-gate electrode of SrRuO3 (SRO) are grown on a SrTiO3 substrate. Structural characterization shows a heteroepitaxy of the fabricated ZnO/PZT/SRO/STO structure with a good crystalline quality and absence of an interface reaction layer. When gate voltages applied to the bottom electrode are swept between −10 V and +10 V, the ON/OFF ratio of drain currents is higher than 105. Such a high ratio is preserved even after 3.5 months; the extrapolation of retention behavior predicts a definite memory window over 10 years. We also switched FeFET channel conductance by applying short pulses to a gate electrode and found that the switching of the FeFET is due to domain wall motion in a ferroelectric film. Polarization reversal starts from a region located under source and drain electrodes and travels along the direction of channel length. In addition, domain wall velocity increases as the domain wall gets closer to the source and drain electrodes in the ferroelectric film. Therefore, the FeFET has the merit of high operation speeds at scale. Then, we demonstrate a 60-nm-channel-length FeFET. The drain current ON/OFF ratio was about three orders of magnitude for write pulse widths as narrow as 10 ns. Although the channel length is set at 60 nm, the conductance can be varied continuously by varying the write pulse width.


ZnO PZT Bottom gate Long retention Motion dynamics Narrow channel 



We would like to thank Yu Nishitani, Hiroyuki Tanaka, Michihito Ueda, Atsushi Omote, Ayumu Tsujimura, Eiji Fujii, Yoshihisa Kato, Yasuhiro Shimada, Daisuke Ueda, and Eisuke Tokumitsu for valuable discussions and excellent experimental assistance.


  1. 1.
    K. Tanaka, Y. Cho, Actual information storage with a recording density of 4 Tbit/in.(2) in a ferroelectric recording medium. Appl. Phys. Lett. 97, 092901 (2010)Google Scholar
  2. 2.
    K. Tanaka et al., Scanning nonlinear dielectric microscopy nano-science and technology for next generation high density ferroelectric data storage. Jpn. J. Appl. Phys. 47, 3311–3325 (2008)Google Scholar
  3. 3.
    W. Shu-Yau, A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor. IEEE Trans. Electron Devices 21, 499–504 (1974)Google Scholar
  4. 4.
    M. Alexe, Measurement of interface trap states in metal-ferroelectric-silicon heterostructures. Appl. Phys. Lett. 72, 2283–2285 (1998)Google Scholar
  5. 5.
    G. Hirooka et al., Proposal for a new ferroelectric gate field effect transistor memory based on ferroelectric-insulator interface conduction. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 43, 2190–2193 (2004)Google Scholar
  6. 6.
    S. Sakai, R. Ilangovan, Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance. IEEE Electron Device Lett. 25, 369–371 (2004)Google Scholar
  7. 7.
    E. Tokumitsu et al., Use of ferroelectric gate insulator for thin film transistors with ITO channel. Microelectr. Eng. 80, 305–308 (2005)Google Scholar
  8. 8.
    K. Takahashi et al., Thirty-day-long data retention in ferroelectric-gate field-effect transistors with HfO2 buffer layers. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Brief Commun. Rev. Pap. 44, 6218–6220 (2005)Google Scholar
  9. 9.
    M. Takahashi, S. Sakai, Self-aligned-gate metal/ferroelectric/insulator/semiconductor field-effect transistors with long memory retention. Jpn. J. Appl. Phys. Part 2-Lett. Exp. Lett. 44, L800–L802 (2005)Google Scholar
  10. 10.
    B.Y. Lee et al., Fabrication and characterization of ferroelectric gate field-effect transistor memory based on ferroelectric-insulator interface conduction. Jpn. J. Appl. Phys. Part 1-Regul. Pap. Brief Commun. Rev. Pap. 45, 8608–8610 (2006)Google Scholar
  11. 11.
    Q.H. Li, S. Sakai, Characterization of Pt/SrBi2Ta2O9/Hf-Al-O/Si field-effect transistors at elevated temperatures. Appl. Phys. Lett. 89 (2006)Google Scholar
  12. 12.
    H. Ishiwara, Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors. Current Appl. Phys. 9, S2–S6 (2009)Google Scholar
  13. 13.
    S. Yokoyama et al., Dependence of electrical properties of epitaxial Pb(Zr,Ti)O3 thick films on crystal orientation and Zr∕(Zr + Ti) ratio. J. Appl. Phys. 98, 094106 (2005)Google Scholar
  14. 14.
    Ü. Özgür et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)Google Scholar
  15. 15.
    J.W. Matthews, A.E. Blakeslee, Defects in epitaxial multilayers. I. Misfit dislocations. J. Cryst. Growth, 27, 118 (1974)Google Scholar
  16. 16.
    Z.K. Tang et al., Self-assembled ZnO nano-crystals and exciton lasing at room temperature. J. Cryst. Growth 287, 169–179 (2006)Google Scholar
  17. 17.
    E.M.C. Fortunato et al., Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Appl. Phys. Lett. 85, 2541–2543 (2004)Google Scholar
  18. 18.
    P.F. Carcia et al., Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 82, 1117–1119 (2003)Google Scholar
  19. 19.
    A. Tsukazaki et al., Quantum hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007)Google Scholar
  20. 20.
    N. Tsuda et al., Electronic Conduction in Oxides, 2nd ed. (Shokabo, 1993)Google Scholar
  21. 21.
    B.L. Zhu et al., Effect of Thickness on the Structure and Properties of ZnO Thin Films Prepared by Pulsed Laser Deposition. Jpn. J. Appl. Phys. 45, 7860 (2006)Google Scholar
  22. 22.
    E. Bellingeri et al., High mobility in ZnO thin films deposited on perovskite substrates with a low temperature nucleation layer. Appl. Phys. Lett. 86, 012109 (2005)Google Scholar
  23. 23.
    Y. Ishibashi, Y. Takagi, Note on Ferroelectric Domain Switching. J. Phys. Soc. Jpn, 31, 506 (1971)Google Scholar
  24. 24.
    J.F. Scott et al., Switching kinetics of lead zirconate titanate submicron thin-film memories. J. Appl. Phys. 64, 787–792 (1988)Google Scholar
  25. 25.
    T. Tybell et al., Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89, 097601 (2002)Google Scholar
  26. 26.
    Y.-H. Shin et al., Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature, 449, 881–884 (2007)Google Scholar
  27. 27.
    E. Tokumitsu et al., Partial switching kinetics of ferroelectric PbZrxTi1-xO3 thin films prepared by sol-gel technique. Jpn. J. Appl. Phys. 33, 5201 (1994)Google Scholar
  28. 28.
    J.Y. Jo et al., Composition-dependent polarization switching behaviors of (111)-preferred polycrystalline Pb(ZrxT1−x)O3 thin films. Appl. Phys. Lett. 92, 012917-3 (2008)Google Scholar
  29. 29.
    T. Fukushima et al., Impedance analysis of controlled-polarization-type ferroelectric-gate thin film transistor using resistor–capacitor lumped constant circuit. Jpn. J. Appl. Phys. 50, 04DD16 (2011)Google Scholar
  30. 30.
    J. Li et al., Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 84, 1174–1176 (2004)Google Scholar
  31. 31.
    H. Ishii et al., Ultrafast polarization switching in ferroelectric polymer thin films at extremely high electric fields. Appl. Phys. Express 4, 031501 (2011)Google Scholar
  32. 32.
    Y. Cho, Ultrahigh-density ferroelectric data storage based on scanning nonlinear dielectric microscopy. Jpn. J. Appl. Phys. 44, 5339 (2005)Google Scholar
  33. 33.
    H. Tanaka et al., A ferroelectric gate field effect transistor with a ZnO/Pb(Zr,Ti)O3 heterostructure formed on a silicon substrate. Jpn. J. Appl. Phys. 47, 7527–7532 (2008)Google Scholar
  34. 34.
    Y. Kaneko et al., NOR-type nonvolatile ferroelectric-gate memory cell using composite oxide technology. Jpn. J. Appl. Phys. 48, 09ka19 (2009)Google Scholar
  35. 35.
    Y. Kaneko et al., A dual-channel ferroelectric-gate field-effect transistor enabling nand-type memory characteristics. IEEE Trans. Electron Devices 58, 1311–1318 (2011)Google Scholar
  36. 36.
    M. Ueda et al., A neural network circuit using persistent interfacial conducting heterostructures. J. Appl. Phys. 110, 086104-3 (2011)Google Scholar
  37. 37.
    Y. Nishitani et al., Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks. J. Appl. Phys. 111, 124108-6 (2012)Google Scholar
  38. 38.
    Y. Kaneko et al., Neural network based on a three-terminal ferroelectric memristor to enable on-chip pattern recognition, in 2013 Symposium on VLSI Technology (VLSIT) (2013), pp. T238–T239Google Scholar
  39. 39.
    Y. Nishitani et al., Dynamic observation of brain-like learning in a ferroelectric synapse device. Jpn. J. Appl. Phys. 52, 04CE06 (2013)Google Scholar
  40. 40.
    Y. Kaneko et al., Ferroelectric artificial synapses for recognition of a multishaded image. IEEE Trans. Electron Devices 61, 2827–2833 (2014)Google Scholar
  41. 41.
    Y. Nishitani et al., Supervised learning using spike-timing- dependent plasticity of memristive synapses. IEEE Trans. Neural Netw. Learn. Syst. (accepted)Google Scholar
  42. 42.
    M. Ueda et al., Battery-less shock-recording device consisting of a piezoelectric sensor and a ferroelectric-gate field-effect transistor. Sens. Actuators A: Phys. 232, 75–83 (2015)Google Scholar
  43. 43.
    Y. Kato et al., Nonvolatile memory using epitaxially grown composite-oxide-film technology. Jpn. J. Appl. Phys. 47, 2719–2724 (2008)Google Scholar
  44. 44.
    Y. Kaneko et al., Correlated motion dynamics of electron channels and domain walls in a ferroelectric-gate thin-film transistor consisting of a ZnO/Pb(Zr,Ti)O3 stacked structure. J. Appl. Phys. 110, 084106-7 (2011)Google Scholar
  45. 45.
    Y. Kaneko et al., A 60 nm channel length ferroelectric-gate field-effect transistor capable of fast switching and multilevel programming. Appl. Phys. Lett. 99, 182902-3 (2011)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Advanced Research DivisionPanasonic CorporationKyotoJapan

Personalised recommendations