Advertisement

Adaptive-Learning Synaptic Devices Using Ferroelectric-Gate Field-Effect Transistors for Neuromorphic Applications

  • Sung-Min YoonEmail author
  • Hiroshi Ishiwara
Chapter
  • 11 Downloads
Part of the Topics in Applied Physics book series (TAP, volume 131)

Abstract

An adaptive-learning ferroelectric neuron circuit is proposed and fabricated on a silicon-on-insulator structure, which is composed of a metal-ferroelectric-semiconductor field-effect transistor (MFSFET) and an oscillation circuit as an artificial synapse and neuron devices, respectively. Typical oxide ferroelectric SrBi2Ta2O9 thin film is selected as a ferroelectric gate insulator for the MFSFET. The synapse MFSFET shows good memory operations and gradual learning effect. The drain current is gradually modulated with increasing the number of input pulses with a sufficiently short duration. The output pulse frequency of the fabricated neuron circuit is also confirmed to gradually increase as the number of input pulses increased. The weighted-sum operation is realized by constructing the synapse array composed of the MFSFETs. The output pulse performance including the pulse amplitude and time-dependent stability are improved by employing Schmitt-trigger oscillator and metal-ferroelectric-metal-oxide-semiconductor gate stack structure, respectively.

References

  1. 1.
    T. Shibata, T. Ohmi, IEEE Trans. Electron Devices 39, 1444 (1992)Google Scholar
  2. 2.
    T. Shibata, H. Kosaka, H. Ishii, T. Ohmi, IEEE J. Solid State Circuits 30, 913 (1995)Google Scholar
  3. 3.
    O. Fujita, Y. Amemiya, IEEE Trans. Electron Device, 40, 2029 (1993)Google Scholar
  4. 4.
    K. Nakajima, S. Sato, T. Kitaura, J. Murota, Y. Sawada, IEICE Trans. Electron. E78-C, 101 (1995)Google Scholar
  5. 5.
    C. Diorio, P. Hasler, B.A. Minch, C.A. Mead, IEEE Trans. Electron Devices 43, 1972 (1996).Google Scholar
  6. 6.
    H. Ishiwara, Jpn. J. Appl. Phys. 32, 442 (1993)Google Scholar
  7. 7.
    H. Ishiwara, T. Shimamura, E. Tokumitsu, Jpn. J. Appl. Phys. 36, 1655 (1997)Google Scholar
  8. 8.
    M. Avrami, J. Chem. Phys. 7, 1103 (1939)Google Scholar
  9. 9.
    Y. Ishibashi, Y. Takagi, J. Phys. Soc. 31, 506 (1971)Google Scholar
  10. 10.
    E. Tokumitsu, N. Tanisake, H. Ishiwara, Jpn. J. Appl. Phys. 33, 5201 (1994)Google Scholar
  11. 11.
    E. Tokumitsu, R. Nakamura, K. Itani, H. Ishiwara, Jpn. J. Appl. Phys. 34, 1061 (1995)Google Scholar
  12. 12.
    S.M. Yoon, E. Tokumitsu, H. Ishiwara, IEEE Electron Device Lett. 20, 229 (1999)Google Scholar
  13. 13.
    S.M. Yoon, Y. Kurita, E. Tokumitsu, H. Ishiwara, Jpn. J. Appl. Phys. 37, 1110 (1998)Google Scholar
  14. 14.
    S.M. Yoon, E. Tokumitsu, H. Ishiwara, Jpn. J. Appl. Phys. 38, 2289 (1999)Google Scholar
  15. 15.
    S.M. Yoon, E. Tokumitsu, H. Ishiwara, IEEE Electron Device Lett. 20, 526 (1999)Google Scholar
  16. 16.
    S.M. Yoon, E. Tokumitsu, H. Ishiwara, IEEE Trans. Electron Device 47, 1630 (2000)Google Scholar
  17. 17.
    S.M. Yoon, E. Tokumitsu, H. Ishiwara, Jpn. J. Appl. Phys. 39, 2119 (2000)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Advanced Materials Engineering for Information and ElectronicsKyung Hee UniversityYonginSouth Korea
  2. 2.Tokyo Institute of TechnologyMidori-ku, YokohamaJapan

Personalised recommendations