Advertisement

Novel Applications of Antiferroelectrics and Relaxor Ferroelectrics: A Material’s Point of View

  • Min Hyuk Park
  • Cheol Seong HwangEmail author
Chapter
  • 65 Downloads
Part of the Topics in Applied Physics book series (TAP, volume 131)

Abstract

In this chapter, various applications based on pyroelectricity of antiferroelectrics and relaxor ferroelectrics are presented from the material’s point of view. While the pyroelectricity of the conventional antiferroelectric materials, such as PbZrO3, has been reported from the 1960s, the pyroelectricity of antiferroelectric HfxZr1−xO2 (x = 0.1–0.4) thin films was first reported in 2014. The antiferroelectric HfxZr1−xO2 (x = 0.1–0.4) thin films are believed to be highly promising for various applications, including electrostatic energy storage, electrocaloric cooling, pyroelectric energy harvesting, and infrared sensing. The theoretical background and basic operation principles of these energy-related applications will be briefly presented in the introduction. In this chapter, the material properties of only these new antiferroelectric thin films are dealt with because those of the conventional materials have been reported extensively elsewhere. In Sects. 17.217.5, the performance of HfxZr1−xO2 thin films in the aforementioned applications will be presented, and the performance of HfxZr1−xO2 films will also be compared with that of the conventional antiferroelectric and relaxor ferroelectric materials. In Sect. 17.6, the perspectives of antiferroelectric HfO2-based films in the aforementioned applications will be presented, with focus on the recently suggested future multifunctional monolithic device.

Notes

Acknowledgements

This work was supported by the Global Research Laboratory Program (2012K1A1A2040157) of the Ministry of Science, ICT, and Future Planning of the Republic of Korea, and by a National Research Foundation of Korea (NRF) grant funded by the South Korean government (MSIP) (2014R1A2A1A10052979).

References

  1. 1.
    C. Kittel, Phys. Rev. 82, 729 (1951)Google Scholar
  2. 2.
    G. Burns and F.H. Dacol, Phys. Rev. B 28, 2578 (1983)Google Scholar
  3. 3.
    G. Xu, Z. Zhong, Y. Bing, Z. –G. Ye, and G. Shirane, Nat. Mater. 5, 134 (2006)Google Scholar
  4. 4.
    L.E. Cross, Ferroelectrics 76, 241 (1987)Google Scholar
  5. 5.
    R.A. Cowley, Adv. Phys. 60, 229 (2011)Google Scholar
  6. 6.
    A.A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006)Google Scholar
  7. 7.
    S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, and X. Geng, Prog. Mater. Sci. 68, 1 (2015)Google Scholar
  8. 8.
    X. Hao, J. Zhai, L.B. Kong, Z. Xu, Prog. Mater. Sci. 63, 1 (2014)Google Scholar
  9. 9.
    K. Yao, S. Chen, M. Rahimabady, M.S. Mirshekarloo, S. Yu, F.E.H. Tay, T. Sritharan, L. Lu, IEEE T. Ultrason. Ferr. 58, 1968 (2011)Google Scholar
  10. 10.
    J. Li, S. Tan, S. Ding, H. Li, L. Yang, and Z. Zhang, J. Mater. Chem. 22, 23468 (2012)Google Scholar
  11. 11.
    S.E. Reyes-Lillo, K.F. Garrity, K.M. Rabe, arXiv:cond-mat/1403.3878 (2014)
  12. 12.
    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, C.S. Hwang, 4, 1400610 (2014)Google Scholar
  13. 13.
    M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick, C.S. Hwang, Adv. Mater. 27, 1811 (2015)Google Scholar
  14. 14.
    G. Sebald, S. Pruvost, D. Guyomar, Smart Mater. Struct. 17, 015012 (2008)Google Scholar
  15. 15.
    G. Vats, R. Vaish, C.R. Bowen, J. Appl. Phys. 115, 013505 (2014)Google Scholar
  16. 16.
    F.Y. Lee, A. Navid, L. Pilon, Appl. Therm. Eng. 37, 30 (2012)Google Scholar
  17. 17.
    A. Navid, L. Pilon, Smart Mater. Struct. 20, 025012 (2011)Google Scholar
  18. 18.
    R. Kandilian, A. Navid, L. Pilon, Smart Mater. Struct. 20, 055020 (2011)Google Scholar
  19. 19.
    F.Y. Lee, S. Goljahi, I.M. McKinley, C.S. Lynch, L. Pilon, Smart Mater. Struct. 21, 025021 (2012)Google Scholar
  20. 20.
    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, C.S. Hwang, Nano Energy 12, 131 (2015)Google Scholar
  21. 21.
    A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Science 311, 1270 (2006)Google Scholar
  22. 22.
    B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, Q.M. Zhang, Science 321, 821 (2008)Google Scholar
  23. 23.
    S.-G. Lu, Q. Zhang, Adv. Mater. 21, 1983 (2009)Google Scholar
  24. 24.
    B. Peng, H. Fan, Q. Zhang, Adv. Funct. Mater. 23, 2987 (2013)Google Scholar
  25. 25.
    X. Luo, W. Zhou, S.V. Ushakov, A. Nevrotsky, A.A. Demkov, Phys. Rev. B 80, 134119 (2009)Google Scholar
  26. 26.
    T.M. Correia, S. Kar-Narayan, J.S. Young, J.F. Scott, N.D. Mathur, R.W. Whatmore, Q. Zhang, J. Phys. D: Appl. Phys. 44, 165407 (2011)Google Scholar
  27. 27.
    A.S. Mishenko, Q. Zhang, R.W. Whatmore, J.F. Scott, N.D. Marthur, Appl. Phys. Lett. 89, 242912 (2006)Google Scholar
  28. 28.
    D. Saranya, A.R. Chaudhuri, J. Parui, S.B. Krupanidhi, Bull. Mater. Sci. 32, 259 (2009)Google Scholar
  29. 29.
    P.F. Liu, J.L. Wang, X.J. Meng, J. Yang, B. Dkhil, J.H. Chu, New J. Phys. 12, 023035 (2010)Google Scholar
  30. 30.
    R.W. Whatmore, J. Electroceram. 13, 139 (2004)Google Scholar
  31. 31.
    A.J. Holden, IEEE T. Ultrason. Ferr. 58, 1981 (2011)Google Scholar
  32. 32.
    S.B. Lang, Phys. Today 58, 31 (2005)Google Scholar
  33. 33.
    M. Mackaym, D.E. Schuele, L. Zhu, L. Flandinm M.A. Wolak, J.S. Shirk, A. Hiltner, E. Baer, Macromolecules 45, 1954 (2012)Google Scholar
  34. 34.
    J. Müller, T.S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, T. Mikolajick, Nano Lett. 12, 4318 (2012)Google Scholar
  35. 35.
    S.G. Lu, B. Rozic, Q.M. Zhang, Z. Kutnjak, X.Y. Li, E. Furman, L.J. Gorny, M.R. Lin, B. Malic, M. Kosec, R. Blinc, R. Pirc, Appl. Phys. Lett. 97, 162904 (2010)Google Scholar
  36. 36.
    S.G. Lu, B. Rozic, Q.M. Zhang, Z. Kutnjak, R. Pirc, M.R. Lin, X.Y. Li, L. Gorny, Appl. Phys. Lett. 97, 202901 (2010)Google Scholar
  37. 37.
    X.Y. Li, X.S. Qian, S.G. Lu, J.P. Cheng, Z. Fang, and Q.M. Zhang, Appl. Phys. Lett. 99, 052907 (2011)Google Scholar
  38. 38.
    G. Sebald, E. Lefeuvre, D. Guyomar, IEEE T. Ultrason. Ferr. 55, 538 (2008)Google Scholar
  39. 39.
    S.A. Sherrill, P. Banerjee, G.W. Rubloff, and S.B. Lee, Phys. Chem. Chem. Phys. 13, 20714 (2011)Google Scholar
  40. 40.
    L.C. Haspert, E. Gillette, S.B. Lee, G.W. Rubloff, Energy Environ. Sci. 6, 2578 (2013)Google Scholar
  41. 41.
    J.H. Klootwijk, K.B. Jinesh, W. Dekkers, J.F. Verhoeven, F.C. van den Heuvel, H.-D. Kim, D. Blin, M.A. Verheijen, R.G.R. Weemaes. M. Kaiser, J.J.M. Ruigrok, F. Roozeboom, IEEE Electron Device Lett. 29, 740 (2008)Google Scholar
  42. 42.
    P. Banerjee, I. Perez, L. Henn-Lecordier, S.B. Lee, G.W. Rubloff, Nat. Nanotechnol. 4, 292 (2009)Google Scholar
  43. 43.
    C.C.B. Bufon, J.D.C. González, D.J. Thurmer, D. Grimm, M. Bauer, O.G. Schmidt, Nano Lett. 10, 2506 (2010)Google Scholar
  44. 44.
    X. Hao, Y. Wang, L. Zhang, L. Zhang, S. An, Appl. Phys. Lett. 102, 163903 (2013)Google Scholar
  45. 45.
    B. Ma, D.-K. Kwon, M. Narayanan, U. Balachandran, J. Mater. Res. 24, 2993 (2009)Google Scholar
  46. 46.
    J.F. Scott, Ferroelectric Memories (Springer, Heidelberg, 2000), p. 53.Google Scholar
  47. 47.
    J. Ge, X. Dong, Y. Chen, F. Cao, G. Wang, Appl. Phys. Lett. 102, 142905 (2013)Google Scholar
  48. 48.
    J. Ge, D. Remiens, J. Costecalde, Y. Chen, X. Dong, G. Wang, Appl. Phys. Lett. 103, 162903 (2013)Google Scholar
  49. 49.
    K. Kim, Y.J. Song, Microelectron. Reliab. 43, 385 (2003)Google Scholar
  50. 50.
    J.F. Scott, Annu. Rev. Mater. Res. 41, 229 (2011)Google Scholar
  51. 51.
    X. Moya, S. Kar-Narayan, N.D. Mathur, Nat. Mater. 13, 439 (2014)Google Scholar
  52. 52.
    X. Li, S.-G. Lu, X.-Z. Chen, H. Gu, X. Qian, and Q.M. Zhang, J. Mater. Chem. C 1, 23 (2013)Google Scholar
  53. 53.
    M. Valant, Prog. Mater. Sci. 57, 980 (2012)Google Scholar
  54. 54.
    US Energy Flow Trends, Lawrence Livermore National Laboratory. https://flowcharts.llnl.gov/#2009. Accessed: September 2014
  55. 55.
    G. Sebald, D. Guyomar, A. Agbossou, Smart Mater. Struct. 18, 125006 (2009)Google Scholar
  56. 56.
    C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Energy Environ. Sci. 7, 25 (2014)Google Scholar
  57. 57.
    Y. Yang, W. Guo, K.C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z.L. Wang, Nano Lett. 12, 2833 (2012)Google Scholar
  58. 58.
    R.V.K. Mangalam, J.C. Agar, A.R. Damodaran, J. Karthickm, L.W. Martin, ACS Appl. Mater. Interfaces 5, 13235 (2013)Google Scholar
  59. 59.
    S.R. Hunter, N.V. Lavrik, T. Bannuru, S. Mostafa, S. Rajic, P.G. Datskos, Proc. SPIE 8035, 80350V (2011)Google Scholar
  60. 60.
    S. Porter, M. Mansi, N. Sumpter, and L. Galloway, Sensor Rev. 21, 283 (2001)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringPusan National UniversityBusanSouth Korea
  2. 2.Department of Materials Science and Engineering, Inter-University Semiconductor Research Center, College of EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations