Advertisement

P(VDF-TeFE)/Organic Semiconductor Structure Ferroelectric-Gate FETs

  • Takeshi KanashimaEmail author
  • Masanori Okuyama
Chapter
  • 31 Downloads
Part of the Topics in Applied Physics book series (TAP, volume 131)

Abstract

Organic ferroelectric-gate field-effect transistor (FET) memories were fabricated using pentacene and rubrene thin films as the semiconductors and a poly(vinylidene fluoride–tetrafluoroethylene) [P(VDF-TeFE)] thin film as the ferroelectric gate. The P(VDF-TeFE) film was prepared by spin-coating and annealing at 170 \(^\circ \)C for 2.5 h, and the pentacene was prepared by vacuum evaporation. In contrast, the rubrene thin film sheet was grown by physical vapor transport and placed onto a spin-coated P(VDF-TeFE) thin film layer. The polarization-electric field hysteresis of the P(VDF-TeFE) thin film was observed, and the obtained remanent polarization of 3.9 \(\upmu \)C/cm\(^2\) was sufficient for controlling the surface potential of pentacene or rubrene. A hysteresis loop was clearly observed in the drain current-gate voltage behavior of the ferroelectric-gate FET. In the case of the ferroelectric-gate FET with P(VDF-TeFE)/pentacene, the ON/OFF ratio of drain current was 830, and the carrier mobility was 0.11  cm\(^2\)/Vs. On the other hand, the maximum drain current of the FET with P(VDF-TeFE)/rubrene was 1.6\(\,\times \,\)10\(^{-6}\) A, which is about two orders of magnitude larger than that of the P(VDF-TeFE)-gate FET using the pentacene thin film. The mobility of the organic ferroelectric-gate FET using the rubrene thin film was 0.71 cm\(^2\)/Vs, which is 6.5 times larger than that of the FET with pentacene thin film.

Keywords

PVDF-TeFE Pentacene Rubrene Ferroelectric-gate FET 

References

  1. 1.
    Y. Matsui, M. Okuyama, M. Noda and Y. Hamakawa: Appl. Phys. A 28, 161 (1982).Google Scholar
  2. 2.
    T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike and Y. Tarui: Jpn. J. Appl. Phys. 36, 5908 (1997).Google Scholar
  3. 3.
    D. Y. Kusuma, C. A. Nguyen and P. S. Lee: J. Phys. Chem. B 114, 13289 (2010).Google Scholar
  4. 4.
    S.-M. Yoon, S.-W. Jung, S.-H. Yang, S.-Y. Kang, C.-S. Hwang and B.-G. Yu: Jpn. J. Appl. Phys. 48, 09KA20 (2009).Google Scholar
  5. 5.
    K. H. Lee, G. Lee, K. Lee, M. S. Oh and S. Im: Appl. Phys. Lett. 94, 093304 (2009).Google Scholar
  6. 6.
    B. Kam, X. Li, C. Cristoferi, E. Smits, A. Mityashin, S. Schols, J. Genoe, G. Gelinck and P. Heremans: Appl. Phys. Lett. 101, 033304 (2012).Google Scholar
  7. 7.
    R. Tamura, S. Yoshita, E. Lim, T. Manaka and M. Iwamoto: Jpn. J. Appl. Phys. 48, 021501 (2009).Google Scholar
  8. 8.
    S. Kang, I. Bae, J.-H. Choi, Y. Park, P. Jo, Y. Kim, K.-J. Kim, J.-M. Myoung, E. Kim and C. Park: J. Mater. Chem. 21, 3619 (2011).Google Scholar
  9. 9.
    E. Fukada: Kobayashi Institute of Physical Research News [in Japanese] 63, 5 (1999).Google Scholar
  10. 10.
    J. Hulburt and A. Feiring: Chem. Eng. News 75, 6 (1997).Google Scholar
  11. 11.
    A. E. Feiring and E. R. Wonchoba: Macromolecules 31, 7103 (1998).Google Scholar
  12. 12.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox: Gaussian 09, Revision A.02.Google Scholar
  13. 13.
    S. Tasaka and S. Miyata: J. Appl. Phys. 57, 906 (1985).Google Scholar
  14. 14.
    S. K. Gupta, P. Jha, A. Singh, M. M. Chehimi and D. K. Aswal: Journal of Materials Chemistry C 3, 8468 (2015).Google Scholar
  15. 15.
    A. Yassar: Polymer Science - Series C 56, 4 (2014).Google Scholar
  16. 16.
    C. Wang, H. Dong, W. Hu, Y. Liu and D. Zhu: Chem. Rev. 112, 2208 (2012).Google Scholar
  17. 17.
    A. Facchetti: Materials Today 10, 28 (2007).Google Scholar
  18. 18.
    J. Mei, Y. Diao, A. L. Appleton, L. Fang and Z. Bao: J. Am. Chem. Soc. 135, 6724 (2013).Google Scholar
  19. 19.
    J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda and S. Ogawa: Appl. Phys. Lett. 90, 102120 (2007).Google Scholar
  20. 20.
    O. D. Jurchescu, A. Meetsma and T. T. M. Palstra: Acta Crystallogr. B 62, 330 (2006).Google Scholar
  21. 21.
    S.-H. Lim, A. Rastogi and S. Desu: J. Appl. Phys. 96, 5673 (2004).Google Scholar
  22. 22.
    S. Fujisaki, H. Ishiwara and Y. Fujisaki: Appl. Phys. Lett. 90, 162902 (2007).Google Scholar
  23. 23.
    Y. Park, I.-S. Bae, S. Ju Kang, J. Chang and C. Park: IEEE Trans. Dielectr Electr. Insul. 17, 1135 (2010).Google Scholar
  24. 24.
    S. Das and J. Appenzeller: Nano Lett. 11, 4003 (2011).Google Scholar
  25. 25.
    Y. Park, S. Kang, Y. Shin, R.-H. Kim, I. Bae and C. Park: Curr. Appl. Phys. 11, e30 (2011).Google Scholar
  26. 26.
    H. Miyashita, T. Watanabe, T. Kanashima and M. Okuyama: Ext Abstr (69th Autumn Meeti, 2008); Japan Society of Applied Physics [in Japanese] (2008) 4a-K-8.Google Scholar
  27. 27.
    S.-M. Yoon, S. Yang, C.-W. Byun, S.-W. Jung, M.-K. Ryu, S.-H. K. Park, B. Kim, H. Oh, C.-S. Hwang and B.-G. Yu: Semicond Sci Tech 26, 034007 (2011).Google Scholar
  28. 28.
    C. H. Park, S. Im, J. Yun, G. H. Lee, B. H. Lee and M. M. Sung: Appl. Phys. Lett. 95, 223506 (2009).Google Scholar
  29. 29.
    S.-M. Yoon, S.-H. Yang, C.-W. Byun, S.-H. Ko Park, S.-W. Jung, D.-H. Cho, S.-Y. Kang, C.-S. Hwang and H. Ishiwara: Jpn. J. Appl. Phys. 49, 04DJ06 (2010).Google Scholar
  30. 30.
    G.-G. Lee, E. Tokumitsu, S.-M. Yoon, Y. Fujisaki, J.-W. Yoon and H. Ishiwara: Appl. Phys. Lett. 99, 012901 (2011).Google Scholar
  31. 31.
    A. Van Breemen, B. Kam, B. Cobb, F. G. Rodriguez, G. Van Heck, K. Myny, A. Marrani, V. Vinciguerra and G. Gelinck: Organic Electronics 14, 1966 (2013).Google Scholar
  32. 32.
    S.-M. Yoon, S. Yang, C. Byun, S.-H. K. Park, D.-H. Cho, S.-W. Jung, O.-S. Kwon and C.-S. Hwang: Adv. Funct. Mater. 20, 921 (2010).Google Scholar
  33. 33.
    S.-M. Yoon, S.-W. Jung, S.-H. Yang, C.-W. Byun, C.-S. Hwang, S.-H. Ko Park and H. Ishiwara: Organic Electronics 11, 1746 (2010).Google Scholar
  34. 34.
    J. A. Caraveo-Frescas, P. K. Nayak, H. A. Al-Jawhari, D. B. Granato, U. Schwingenschloegl and H. N. Alshareeft: ACS Nano 7, 5160 (2013).Google Scholar
  35. 35.
    T. Watanabe, H. Miyashita, T. Kanashima and M. Okuyama: Jpn. J. Appl. Phys. 49, 04DD14 (2010).Google Scholar
  36. 36.
    T. Kanashima, K. Yabe and M. Okuyama: Jpn. J. Appl. Phys. 51, 02BK06 (2012).Google Scholar
  37. 37.
    T. Kanashima, T. Watanabe and M. Okuyama: Int. Conf. on Advanced Electromaterials (ICAE 2011) (2011) FM859.Google Scholar
  38. 38.
    A. J. Lovinger: Macromolecules 16, 1529 (1983).Google Scholar
  39. 39.
    R. Khalfin, A. Bezprozvannykh and V. Poddubnyi: Polymer Science U.S.S.R. 30, 2138 (1988).Google Scholar
  40. 40.
    K. Tashiro and H. Kaito: Polymer, 2915 (1992).Google Scholar
  41. 41.
    H. Ohigashi: Jpn. J. Appl. Phys. Suppl. 24S2, 23 (1985).Google Scholar
  42. 42.
    Y. Murata: Polymer Journal 19, 337 (1987).Google Scholar
  43. 43.
    R. A. Laudise, C. Kloc, P. G. Simpkins and T. Siegrist: J. Cryst. Growth 187, 449 (1998).Google Scholar
  44. 44.
    J.-H. Jeong, C. Kimura, H. Aoki and T. Sugino: Jpn. J. Appl. Phys. 49, 04DK23 (2010).Google Scholar
  45. 45.
    J.-H. Jeong, D. Terashima, C. Kimura and H. Aoki: Jpn. J. Appl. Phys. 50, 04DK09 (2011).Google Scholar
  46. 46.
    L. Mariucci, D. Simeone, S. Cipolloni, L. Maijo, A. Pecora, G. Fortunato and S. Brotherton: Solid State Electron 52, 412 (2008).Google Scholar
  47. 47.
    J. C. Hicks, T. E. Jones and J. C. Logan: J. Appl. Phys. 49, 6092 (1978).Google Scholar
  48. 48.
    Y. Waseda, E. Matsubara and K. Shinoda: X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems (Springer, Berlin Heidelberg, 2011).Google Scholar
  49. 49.
    D. E. Henn, W. G. William and D. J. Gibbons: J. Appl. Crystallogr. 4, 256 (1971).Google Scholar
  50. 50.
    X. Zeng, D. Zhang, L. Duan, L. Wang, G. Dong and Y. Qiu: Appl. Surf. Sci. 253, 6047 (2007).Google Scholar
  51. 51.
    W.-H. Kim, M.-H. Kim, C.-M. Keum and J. Park: J. Appl. Phys. 109, 024508 (2011).Google Scholar
  52. 52.
    R. C. G. Naber, K. Asadi, P. W. M. Blom, D. M. De Leeuw and B. De Boer: Adv. Mater. 22, 933 (2010).Google Scholar
  53. 53.
    C. Nguyen, S. Mhaisalkar, J. Ma and P. Lee: Organic Electronics 9, 1087 (2008).Google Scholar
  54. 54.
    K. N. Narayanan Unni, S. Dabos-Seignon and J.-M. Nunzi: J. Phys. D-Appl. Phys. 38, 1148 (2005).Google Scholar
  55. 55.
    T. N. Ng, B. Russo and A. C. Arias: J. Appl. Phys. 106, 094504 (2009).Google Scholar
  56. 56.
    S. J. Kang, I. Bae, Y. J. Park, T. H. Park, J. Sung, S. C. Yoon, K. H. Kim, D. H. Choi and C. Park: Adv. Funct. Mater. 19, 1609 (2009).Google Scholar
  57. 57.
    R. Naber, C. Tanase, P. Blom, G. Gelinck, A. Marsman, F. Touwslager, S. Setayesh and D. De Leeuw: Nature Mater. 4, 243 (2005).Google Scholar
  58. 58.
    K. Mueller, K. Henkel, I. Paloumpa and D. Schmeiber: Thin Solid Films 515, 7683 (2007).Google Scholar
  59. 59.
    S. Kang, Y. Park, I. Bae, K.-J. Kim, H.-C. Kim, S. Bauer, E. Thomas and C. Park: Adv. Funct. Mater. 19, 2812 (2009).Google Scholar
  60. 60.
    K. N. N. Unni, R. de Bettignies, S. Dabos-Seignon and J.-M. Nunzi: Mater. Lett. 59, 1165 (2005).Google Scholar
  61. 61.
    R. Naber, M. Mulder, B. De Boer, P. Blom and D. De Leeuw: Organic Electronics 7, 132 (2006).Google Scholar
  62. 62.
    J. Chang, C. Shin, Y. Park, S. Kang, H. Jeong, K.-J. Kim, C. Hawker, T. Russell, D. Ryu and C. Park: Organic Electronics 10, 849 (2009).Google Scholar
  63. 63.
    W. Choi, S. H. Noh, D. K. Hwang, J.-M. Choi, S. Jang, E. Kim and S. Im: Electrochem. Solid-State Lett. 11, H47 (2008).Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  2. 2.Institute for NanoScience DesignOsaka UniversityToyonakaJapan

Personalised recommendations