Features, Principles, and Developments of Ferroelectric-Gate Field-Effect Transistors

  • Masanori OkuyamaEmail author
Part of the Topics in Applied Physics book series (TAP, volume 131)


Ferroelectric-gate field-effect transistor (FeFET) memories are overviewed. The FeFET shows excellent features as an integrated memory such as nonvolatality, better scalability, higher read–write speeds, lower dissipation powers, higher tamper resistances, and higher radioactivity tolerance. But memory retention was the most critical problem for its practical realization. Mechanisms of degradation of the retention are discussed in metal–ferroelectric–insulator–semiconductor (MFIS) gate structure in which the insulator is inserted between the ferroelectric and the semiconductor to avoid interface damages suffered during the device preparation at high temperature. It is concluded from careful discussion that leakage currents through insulator–semiconductor and metal–ferroelectric junctions store charges in the interface between the ferroelectric and the insulator layers, which reduce apparent dielectric polarization and promote the degradation of the retention. Electronic property of the interfaces and the ferroelectric layer in the MFIS structure has been improved by nitrogen radical treatment and thermal annealing, and the retention of MFIS capacitance is shown to extend very much. Moreover, several kinds of improved MFIS FETs are introduced, and the memory retention has been extended very much to be useful for the practical realization of excellent memory devices.


Ferroelectric-gate FET FeFET 1T-type MFIS Retention Leakage current Nonvolatile 



The author would like to thank Dr. Mitsue Takahashi and Profs. Minoru Noda and Takeshi Kanashima for helping this work, and Enago ( for the English language review.


  1. 1.
    J.L. Moll, Y. Tarui, IEEE Trans. Electron Devices ED-10, 338 (1963)Google Scholar
  2. 2.
    R. Zuleeg, H.H. Wiede, Solid State Electr. 9, 657 (1966)Google Scholar
  3. 3.
    S.S. Perlman, K.H. Ludewig, IEEE Trans. Electron Devices ED-14, 816 (1967)Google Scholar
  4. 4.
    J.H. McCuster, S.S. Perlman, IEEE Trans. Electron Devices ED-15, 182 (1968)Google Scholar
  5. 5.
    G.G. Teather, L. Young, Solid State Electr. 9, 527 (1968)Google Scholar
  6. 6.
    J.C. Crawford, F.L. English, IEEE Trans. Electron Devices ED-16, 525 (1969)Google Scholar
  7. 7.
    S.-Y. Wu, IEEE Trans. Electron Devices ED-21, 499 (1974)Google Scholar
  8. 8.
    K. Sugibuchi, Y. Kurogi, N. Endo, J. Appl. Phys. 46, 2877 (1975)Google Scholar
  9. 9.
    Y. Higuma, Y. Matsui, M. Okuyama, T. Nakagawa, Y. Hamakawa, in Proceedings of the 9th Conference on Solid State Devices, Tokyo (1977)Google Scholar
  10. 10.
    Y. Hamakawa, Y. Matsui, Y. Higuma, Y. Hamakawa, in Proceedings of IEEE IEDM Conference, Washington D.C. (1977)Google Scholar
  11. 11.
    Y. Matsui, Y.Higuma, M. Okuyama, T. Nakagawa, Y. Hamakawa, in Proceedings of the 1st Conference on Ferroelectric Material Applications, Kyoto (1977)Google Scholar
  12. 12.
    W.I. Kinney, W. Sheoherd, W. Miller, J. Evans, R. Womack, in Technical Digest of IEEE (IEDM, Washington, D.C., USA, Dec., 1987), p. 850Google Scholar
  13. 13.
    S.S. Eaton, D.B. Butler, M. Parris, D. Wilson, H. McNeillie, in Digest of Technical IEEE Papers of International Solid State Circuit Conference, San Francisco, USA, 31 Feb 1988, p. 130Google Scholar
  14. 14.
    J.F. Scott, Ferroelectric Memories, Springer Series on Advanced Microelectronics, vol. 3 (Springer, Berlin, 2000)Google Scholar
  15. 15.
    H. Ishiwara, M. Okuyama, Y. Arimoto, Ferroelectric Random Access Memories, Topics in Applied Physics 93 (Springer, Berlin, 2004)Google Scholar
  16. 16.
    M. Okuyama, Y. Ishibashi, Ferroelectric Thin Films, Topics in Applied Physics 98 (Springer, Berlin, 2005)Google Scholar
  17. 17.
    C.A.-P. Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature 374, 627 (1995)Google Scholar
  18. 18.
    B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature, 401, 682 (1999)Google Scholar
  19. 19.
    T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Jpn. J. Appl. Phys. 34, 5184 (1995)Google Scholar
  20. 20.
    K. Takahashi, K. Aizawa, B.-E. Park, H. Ishiwara, Jpn. J. Appl. Phys. 44, 6218 (2005).Google Scholar
  21. 21.
    M. Okuyama, M. Noda, Topics in Applied Physics, vol. 98, eds. by M. Okuyama, Y. Ishibashi (Springer, Berlin, 2005), p. 219Google Scholar
  22. 22.
    M. Okuyama, M. Takahashi, H. Sugiyama, T. Nakaiso, K. Kodama, M. Noda, in Proceedings of the 12th IEEE International Symposium on Applications of Ferroelectrics (2000), pp. 337–340Google Scholar
  23. 23.
    M. Okuyama, H. Sugiyama, T. Nakaiso, M. Noda, Integr. Ferroelectr. 34, 37 (2000)Google Scholar
  24. 24.
    M. Okuyama, M. Takahashi, K. Kodama, T. Nakaiso, M. Noda: Mat. Res. Soc. Symp. Proc. 655, cc13.10.1 (2000)Google Scholar
  25. 25.
    M. Takahashi, H. Sugiyama, T. Nakaiso, K. Kodama, M. Noda, M. Okuyama, Jpn. J. Appl. Phys. 40, 2923 (2001)Google Scholar
  26. 26.
    S.M. Sze, Physics of Semiconductor Devices, 2nd ed., Chap. 7 (A Wiley-Interscience Publication, New York, 1981), p. 403Google Scholar
  27. 27.
    S.L. Miller, P.J. McWhorter, J. Appl. Phys. 72, 5999 (1992)Google Scholar
  28. 28.
    T. Ohmi, M. Morita, A. Teramoto, K. Makihara, K.S. Tseng, Appl. Phys. Lett. 60, 2126 (1992)Google Scholar
  29. 29.
    Le Van Hai, T. Kanashima, M. Okuyama: INTECH, Ferroelectric Materials—Material Aspects, ed. by M. Lallart, Chap. 7 (2011), p. 129Google Scholar
  30. 30.
    L. Van Hai, T. Kanashima, M. Okuyam, Integr. Ferroelectr. 96, 27 (2008)Google Scholar
  31. 31.
    L. Van Hai, T. Kanashima, M. Okuyama, Integr. Ferroelectr. 84, 179 (2006)Google Scholar
  32. 32.
    S-M. Yoon, H. Ishiwara: IEEE Trans. Electron Devices 48, 2002 (2001)Google Scholar
  33. 33.
    S. Yamamoto, H.-S. Kim, H. Ishiwara, Jpn. J. Appl. Phys. 42, 2059 (2003)Google Scholar
  34. 34.
    Y. Nakao, T. Nakamura, A. Kamisawa, H. Takasu, Integr. Ferroelectr. 6, 23 (1995)Google Scholar
  35. 35.
    T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Integr. Ferroelectr. 9, 179 (1995)Google Scholar
  36. 36.
    Y. Fujimori, N. Izumi, T. Nakamura, A. Kamisawa, Jpn. J. Appl. Phys. 37, 5207 (1998)Google Scholar
  37. 37.
    E. Tokumitsu, G. Fuji, H. Ishiwara, Jpn. J. Appl. Phys. 39, 2125 (2000)Google Scholar
  38. 38.
    T. Suzuki, E. Tokumitsu, Jpn. J. Appl. Phys. 41, 6886 (2002)Google Scholar
  39. 39.
    S. Sakai, R. Ilangovan, IEEE Electr. Device Lett. 25, 369 (2004)Google Scholar
  40. 40.
    K. Aizawa, B.-E. Park, Y. Kawashima, K. Takahashi, H. Ishiwara, Appl. Phys. Lett. 85, 3199 (2004)Google Scholar
  41. 41.
    S. Sakai, R. Ilangovan, M. Takahashi, Jpn. J. Appl. Phys. 43, 7876 (2004)Google Scholar
  42. 42.
    M. Takahashi, S. Sakai, Jpn. J. Appl. Phys. 44, L800 (2005)Google Scholar
  43. 43.
    X. Zhang, K. Takeuchi, M. Takahashi, S. Sakai, Jpn. J. Appl. Phys. 51, 04DD01 (2012)Google Scholar
  44. 44.
    U. Schroeder, S. Mueller, J. Mueller, E. Yurchuk, D. Martin, C. Adelmann, T. Schloesser, R. van Bentum, T. Mikolajick, ECS J. Solid State Sci. Technol. 2, N69 (2013)Google Scholar
  45. 45.
    J. Muller, T.S. Boscke, U. Schroeder, R. Hoffman, T. Mikolajick, IEEE Electron. Device Lett. 33, 185 (2012)Google Scholar
  46. 46.
    R.C.G. Naber, C. Tanase, P.W.M. Blom, G.H. Gelinck, A.W. Marsman, F.J. Touwslager, S. Setayesh, D.M. De Leeuw, Nat. Mater. 4, 243 (2005)Google Scholar
  47. 47.
    G.G. Lee, B.E. Park, J. Kor. Phys. Soc. 56, 1484 (2010)Google Scholar
  48. 48.
    T. Watanabe, H. Miyashita, T. Kanashima, M. Okuyama, Jpn. J. Appl. Phys. 49, 04DD14 (2010)Google Scholar
  49. 49.
    S.-H. Noh, W. Choi, M.S. Oh, S. Jang, E. Kim, Appl. Phys. Lett. 90(25), 253504 (2007)Google Scholar
  50. 50.
    Y. Kato, Y. Kaneko, H. Tanaka, Y. Shimada, Jpn. J. Appl. Phys. 47, 2719 (2008)Google Scholar
  51. 51.
    T. Fukushima, T. Yoshimura, K. Masuko, A. Ashida, N. Fujimura, Jpn. J. Appl. Phys. 47, 8874 (2008)Google Scholar
  52. 52.
    E. Tokumitsu, M. Senoo, T. Miyasako, Microelectr. Eng. 80(suppl.), 305 (2005)Google Scholar
  53. 53.
    S.-M. Yoon, S.-H. Yang, S.-W. Jung, E. Tokumitsu, H. Ishiwara, Appl. Phys. Lett. 96, 232903 (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Institute for Nanoscience DesignOsaka UniversityToyonakaJapan

Personalised recommendations