Advertisement

The Function of the Peroxisome

  • Masashi MoritaEmail author
  • Tsuneo ImanakaEmail author
Chapter

Abstract

Peroxisomes are organelles that are essential for maintaining cellular function in lipid metabolism, redox homeostasis and intracellular signalling. They are involved in the β-oxidation of various fatty acids, especially very long chain fatty acids, as well as the synthesis of ether-phospholipids and bile acids in mammals. Substrates for the β-oxidation are transported into peroxisomes by the ABC transporters ABCD1–3, and the metabolites produced by the β-oxidation cycle are released from peroxisomes through certain unique transporters and channels on the peroxisomal membrane. The initial steps of ether-phospholipid synthesis take place in peroxisomes, with one of steps being tightly controlled by negative feedback regulation. As peroxisomes have various enzymes that generate reactive oxygen species such as H2O2, their metabolic activity significantly impacts cellular redox balance, which is closely connected to the redox homeostasis in mitochondria. It has been shown that the physical contact sites between peroxisomes and lysosomes, the ER, mitochondria or lipid droplets are formed by tethered proteins and play an important role in the transporting or shuttling of metabolites between peroxisomes and other organelles. Furthermore, peroxisomes tightly collaborate with mitochondria in the antiviral defence system. In this chapter, we describe the current understanding of the peroxisomal metabolic pathways including lipid metabolism and redox metabolism, as well as the crosstalk that takes place between peroxisomes and other organelles.

Keywords

ABC transporter Crosstalk of peroxisomes with other organelles Ether-phospholipid synthesis Fatty acid β- and α-oxidation Oxidative stress Peroxisome Reactive oxygen species Solute transporter 

Abbreviations

ABC

ATP-binding cassette

ACOXs

Acyl-CoA oxidases

CNS

Central nervous system

DHCA

Dihydroxycholestanoic acid

ER

Endoplasmic reticulum

LCFA

Long chain fatty acid

LDs

Lipid droplets

MAVS

Mitochondrial antiviral-signaling protein

NBD

Nucleotide-binding domain

PMP

Peroxisomal membrane protein

PPAR

Peroxisome proliferator-activated receptor

PUFAs

Polyunsaturated fatty acids

ROS

Reactive oxygen species

THCA

Trihydroxycholestanoic acid

TMD

Transmembrane domain

VLCFA

Very long chain fatty acid

X-ALD

X-linked adrenoleukodystrophy

Notes

Acknowledgments

The publication is supported in part by a Grant-in-Aid for Intractable Diseases from the Ministry of health, Labour and Welfare of Japan and from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Pacific Edit reviewed the manuscript prior to submission.

References

  1. AbdelRaheim SR, Cartwright JL, Gasmi L, McLennan AG (2001) The NADH diphosphatase encoded by the Saccharomyces cerevisiae NPY1 nudix hydrolase gene is located in peroxisomes. Arch Biochem Biophys 388(1):18–24.  https://doi.org/10.1006/abbi.2000.2268CrossRefPubMedGoogle Scholar
  2. Abdelraheim SR, Spiller DG, McLennan AG (2003) Mammalian NADH diphosphatases of the Nudix family: cloning and characterization of the human peroxisomal NUDT12 protein. Biochem J 374(Pt 2):329–335.  https://doi.org/10.1042/BJ20030441CrossRefPubMedPubMedCentralGoogle Scholar
  3. Agrimi G, Russo A, Scarcia P, Palmieri F (2012) The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+. Biochem J 443(1):241–247.  https://doi.org/10.1042/BJ20111420CrossRefPubMedGoogle Scholar
  4. Antonenkov VD, Hiltunen JK (2006) Peroxisomal membrane permeability and solute transfer. Biochim Biophys Acta 1763(12):1697–1706.  https://doi.org/10.1016/j.bbamcr.2006.08.044CrossRefPubMedGoogle Scholar
  5. Antonenkov VD, Hiltunen JK (2012) Transfer of metabolites across the peroxisomal membrane. Biochim Biophys Acta 1822(9):1374–1386.  https://doi.org/10.1016/j.bbadis.2011.12.011CrossRefPubMedGoogle Scholar
  6. Antonenkov VD, Grunau S, Ohlmeier S, Hiltunen JK (2010) Peroxisomes are oxidative organelles. Antioxid Redox Signal 13(4):525–537.  https://doi.org/10.1089/ars.2009.2996CrossRefPubMedGoogle Scholar
  7. Antonenkov VD, Isomursu A, Mennerich D, Vapola MH, Weiher H, Kietzmann T, Hiltunen JK (2015) The human mitochondrial DNA depletion syndrome gene MPV17 encodes a non-selective channel that modulates membrane potential. J Biol Chem 290(22):13840–13861.  https://doi.org/10.1074/jbc.M114.608083CrossRefPubMedPubMedCentralGoogle Scholar
  8. Apanasets O, Grou CP, Van Veldhoven PP, Brees C, Wang B, Nordgren M, Dodt G, Azevedo JE, Fransen M (2014) PEX5, the shuttling import receptor for peroxisomal matrix proteins, is a redox-sensitive protein. Traffic 15(1):94–103.  https://doi.org/10.1111/tra.12129CrossRefPubMedGoogle Scholar
  9. Arai Y, Hayashi M, Nishimura M (2008) Proteomic identification and characterization of a novel peroxisomal adenine nucleotide transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis. Plant Cell 20(12):3227–3240.  https://doi.org/10.1105/tpc.108.062877CrossRefPubMedPubMedCentralGoogle Scholar
  10. Baarine M, Andreoletti P, Athias A, Nury T, Zarrouk A, Ragot K, Vejux A, Riedinger JM, Kattan Z, Bessede G, Trompier D, Savary S, Cherkaoui-Malki M, Lizard G (2012) Evidence of oxidative stress in very long chain fatty acid--treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1 and ACOX1 peroxisomal proteins. Neuroscience 213:1–18.  https://doi.org/10.1016/j.neuroscience.2012.03.058CrossRefPubMedGoogle Scholar
  11. Barbosa AD, Savage DB, Siniossoglou S (2015) Lipid droplet-organelle interactions: emerging roles in lipid metabolism. Curr Opin Cell Biol 35:91–97.  https://doi.org/10.1016/j.ceb.2015.04.017CrossRefPubMedGoogle Scholar
  12. Baumgart E, Vanhorebeek I, Grabenbauer M, Borgers M, Declercq PE, Fahimi HD, Baes M (2001) Mitochondrial alterations caused by defective peroxisomal biogenesis in a mouse model for Zellweger syndrome (PEX5 knockout mouse). Am J Pathol 159(4):1477–1494.  https://doi.org/10.1016/S0002-9440(10)62534-5CrossRefPubMedPubMedCentralGoogle Scholar
  13. Beaufay H, Jacques P, Baudhuin P, Sellinger OZ, Berthet J, De Duve C (1964) Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J 92(1):184–205PubMedPubMedCentralGoogle Scholar
  14. Beedholm-Ebsen R, van de Wetering K, Hardlei T, Nexo E, Borst P, Moestrup SK (2010) Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin. Blood 115(8):1632–1639.  https://doi.org/10.1182/blood-2009-07-232587CrossRefPubMedGoogle Scholar
  15. Berger J, Dorninger F, Forss-Petter S, Kunze M (2016) Peroxisomes in brain development and function. Biochim Biophys Acta 1863(5):934–955.  https://doi.org/10.1016/j.bbamcr.2015.12.005CrossRefPubMedGoogle Scholar
  16. Binns D, Januszewski T, Chen Y, Hill J, Markin VS, Zhao Y, Gilpin C, Chapman KD, Anderson RG, Goodman JM (2006) An intimate collaboration between peroxisomes and lipid bodies. J Cell Biol 173(5):719–731.  https://doi.org/10.1083/jcb.200511125CrossRefPubMedPubMedCentralGoogle Scholar
  17. Blackstone C (2018) Converging cellular themes for the hereditary spastic paraplegias. Curr Opin Neurobiol 51:139–146.  https://doi.org/10.1016/j.conb.2018.04.025CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bonekamp NA, Volkl A, Fahimi HD, Schrader M (2009) Reactive oxygen species and peroxisomes: struggling for balance. Biofactors 35(4):346–355.  https://doi.org/10.1002/biof.48CrossRefPubMedGoogle Scholar
  19. Borths EL, Poolman B, Hvorup RN, Locher KP, Rees DC (2005) In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B12 uptake. Biochemistry 44(49):16301–16309.  https://doi.org/10.1021/bi0513103CrossRefPubMedGoogle Scholar
  20. Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822(9):1442–1452.  https://doi.org/10.1016/j.bbadis.2012.05.008CrossRefPubMedGoogle Scholar
  21. Cartwright JL, Gasmi L, Spiller DG, McLennan AG (2000) The Saccharomyces cerevisiae PCD1 gene encodes a peroxisomal nudix hydrolase active toward coenzyme A and its derivatives. J Biol Chem 275(42):32925–32930.  https://doi.org/10.1074/jbc.M005015200CrossRefPubMedGoogle Scholar
  22. Castro IG, Schuldiner M, Zalckvar E (2018) Mind the organelle gap - peroxisome contact sites in disease. Trends Biochem Sci 43(3):199–210.  https://doi.org/10.1016/j.tibs.2018.01.001CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chang CL, Weigel AV, Ioannou MS, Pasolli HA, Xu CS, Peale DR, Shtengel G, Freeman M, Hess HF, Blackstone C, Lippincott-Schwartz J (2019) Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J Cell Biol 218(8):2583–2599  https://doi.org/10.1083/jcb.201902061CrossRefPubMedGoogle Scholar
  24. Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16(7):1040–1052.  https://doi.org/10.1038/cdd.2009.49CrossRefPubMedGoogle Scholar
  25. Chu BB, Liao YC, Qi W, Xie C, Du X, Wang J, Yang H, Miao HH, Li BL, Song BL (2015) Cholesterol transport through lysosome-peroxisome membrane contacts. Cell 161(2):291–306.  https://doi.org/10.1016/j.cell.2015.02.019CrossRefPubMedGoogle Scholar
  26. Cipolla CM, Lodhi IJ (2017) Peroxisomal dysfunction in age-related diseases. Trends Endocrinol Metab 28(4):297–308.  https://doi.org/10.1016/j.tem.2016.12.003CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cockcroft S, Raghu P (2018) Phospholipid transport protein function at organelle contact sites. Curr Opin Cell Biol 53:52–60.  https://doi.org/10.1016/j.ceb.2018.04.011CrossRefPubMedPubMedCentralGoogle Scholar
  28. Coelho D, Suormala T, Stucki M, Lerner-Ellis JP, Rosenblatt DS, Newbold RF, Baumgartner MR, Fowler B (2008) Gene identification for the cblD defect of vitamin B12 metabolism. N Engl J Med 358(14):1454–1464.  https://doi.org/10.1056/NEJMoa072200CrossRefPubMedGoogle Scholar
  29. Coelho D, Kim JC, Miousse IR, Fung S, du Moulin M, Buers I, Suormala T, Burda P, Frapolli M, Stucki M, Nurnberg P, Thiele H, Robenek H, Hohne W, Longo N, Pasquali M, Mengel E, Watkins D, Shoubridge EA, Majewski J, Rosenblatt DS, Fowler B, Rutsch F, Baumgartner MR (2012) Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet 44(10):1152–1155.  https://doi.org/10.1038/ng.2386CrossRefPubMedGoogle Scholar
  30. Cohen Y, Klug YA, Dimitrov L, Erez Z, Chuartzman SG, Elinger D, Yofe I, Soliman K, Gartner J, Thoms S, Schekman R, Elbaz-Alon Y, Zalckvar E, Schuldiner M (2014) Peroxisomes are juxtaposed to strategic sites on mitochondria. Mol Biosyst 10(7):1742–1748.  https://doi.org/10.1039/c4mb00001cCrossRefPubMedGoogle Scholar
  31. Costello JL, Castro IG, Hacker C, Schrader TA, Metz J, Zeuschner D, Azadi AS, Godinho LF, Costina V, Findeisen P, Manner A, Islinger M, Schrader M (2017a) ACBD5 and VAPB mediate membrane associations between peroxisomes and the ER. J Cell Biol 216(2):331–342.  https://doi.org/10.1083/jcb.201607055CrossRefPubMedPubMedCentralGoogle Scholar
  32. Costello JL, Castro IG, Schrader TA, Islinger M, Schrader M (2017b) Peroxisomal ACBD4 interacts with VAPB and promotes ER-peroxisome associations. Cell Cycle 16(11):1039–1045.  https://doi.org/10.1080/15384101.2017.1314422CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dallabona C, Marsano RM, Arzuffi P, Ghezzi D, Mancini P, Zeviani M, Ferrero I, Donnini C (2010) Sym1, the yeast ortholog of the MPV17 human disease protein, is a stress-induced bioenergetic and morphogenetic mitochondrial modulator. Hum Mol Genet 19(6):1098–1107.  https://doi.org/10.1093/hmg/ddp581CrossRefPubMedGoogle Scholar
  34. Dassa E, Bouige P (2001) The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol 152(3-4):211–229CrossRefGoogle Scholar
  35. De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46(2):323–357.  https://doi.org/10.1152/physrev.1966.46.2.323CrossRefGoogle Scholar
  36. De Marcos Lousa C, van Roermund CW, Postis VL, Dietrich D, Kerr ID, Wanders RJ, Baldwin SA, Baker A, Theodoulou FL (2013) Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids. Proc Natl Acad Sci U S A 110(4):1279–1284.  https://doi.org/10.1073/pnas.1218034110CrossRefPubMedPubMedCentralGoogle Scholar
  37. Decker M, Arand M, Cronin A (2009) Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch Toxicol 83(4):297–318.  https://doi.org/10.1007/s00204-009-0416-0CrossRefPubMedGoogle Scholar
  38. Demarquoy J, Le Borgne F (2015) Crosstalk between mitochondria and peroxisomes. World J Biol Chem 6(4):301–309.  https://doi.org/10.4331/wjbc.v6.i4.301CrossRefPubMedPubMedCentralGoogle Scholar
  39. Deori NM, Kale A, Maurya PK, Nagotu S (2018) Peroxisomes: role in cellular ageing and age related disorders. Biogerontology 19(5):303–324.  https://doi.org/10.1007/s10522-018-9761-9CrossRefPubMedGoogle Scholar
  40. Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141(4):668–681.  https://doi.org/10.1016/j.cell.2010.04.018CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dixon SJ, Stockwell BR (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol 10(1):9–17.  https://doi.org/10.1038/nchembio.1416CrossRefPubMedGoogle Scholar
  42. Dorninger F, Forss-Petter S, Berger J (2017) From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett 591(18):2761–2788.  https://doi.org/10.1002/1873-3468.12788CrossRefPubMedPubMedCentralGoogle Scholar
  43. El-Hattab AW, Craigen WJ, Scaglia F (2017) Mitochondrial DNA maintenance defects. Biochim Biophys Acta Mol Basis Dis 1863(6):1539–1555.  https://doi.org/10.1016/j.bbadis.2017.02.017CrossRefPubMedGoogle Scholar
  44. Engelen M, Kemp S, de Visser M, van Geel BM, Wanders RJ, Aubourg P, Poll-The BT (2012) X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis 7:51.  https://doi.org/10.1186/1750-1172-7-51CrossRefPubMedPubMedCentralGoogle Scholar
  45. Engelmann B, Brautigam C, Thiery J (1994) Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem Biophys Res Commun 204(3):1235–1242.  https://doi.org/10.1006/bbrc.1994.2595CrossRefPubMedGoogle Scholar
  46. Fan J, Li X, Issop L, Culty M, Papadopoulos V (2016) ACBD2/ECI2-mediated peroxisome-mitochondria interactions in leydig cell steroid biosynthesis. Mol Endocrinol 30(7):763–782.  https://doi.org/10.1210/me.2016-1008CrossRefPubMedPubMedCentralGoogle Scholar
  47. Fanelli F, Sepe S, D’Amelio M, Bernardi C, Cristiano L, Cimini A, Cecconi F, Ceru MP, Moreno S (2013) Age-dependent roles of peroxisomes in the hippocampus of a transgenic mouse model of Alzheimer’s disease. Mol Neurodegen 8:8.  https://doi.org/10.1186/1750-1326-8-8CrossRefGoogle Scholar
  48. Farr RL, Lismont C, Terlecky SR, Fransen M (2016) Peroxisome biogenesis in mammalian cells: the impact of genes and environment. Biochim Biophys Acta 1863(5):1049–1060.  https://doi.org/10.1016/j.bbamcr.2015.08.011CrossRefPubMedGoogle Scholar
  49. Farre JC, Mahalingam SS, Proietto M, Subramani S (2019) Peroxisome biogenesis, membrane contact sites, and quality control. EMBO Rep 20(1):e46864.  https://doi.org/10.15252/embr.201846864CrossRefPubMedGoogle Scholar
  50. Farrell SO, Fiol CJ, Reddy JK, Bieber LL (1984) Properties of purified carnitine acyltransferases of mouse liver peroxisomes. J Biol Chem 259(21):13089–13095PubMedGoogle Scholar
  51. Ferdinandusse S, Mulders J, IJlst IJ, Denis S, Dacremont G, Waterham HR, Wanders RJ (1999) Molecular cloning and expression of human carnitine octanoyltransferase: evidence for its role in the peroxisomal beta-oxidation of branched-chain fatty acids. Biochem Biophys Res Commun 263(1):213–218.  https://doi.org/10.1006/bbrc.1999.1340CrossRefPubMedGoogle Scholar
  52. Ferdinandusse S, Jimenez-Sanchez G, Koster J, Denis S, Van Roermund CW, Silva-Zolezzi I, Moser AB, Visser WF, Gulluoglu M, Durmaz O, Demirkol M, Waterham HR, Gokcay G, Wanders RJ, Valle D (2015) A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 24(2):361–370.  https://doi.org/10.1093/hmg/ddu448CrossRefPubMedPubMedCentralGoogle Scholar
  53. Fourcade S, Ruiz M, Camps C, Schluter A, Houten SM, Mooyer PA, Pampols T, Dacremont G, Wanders RJ, Giros M, Pujol A (2009) A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. Am J Physiol Endocrinol Metab 296(1):E211–E221.  https://doi.org/10.1152/ajpendo.90736.2008CrossRefPubMedGoogle Scholar
  54. Fourcade S, Ruiz M, Guilera C, Hahnen E, Brichta L, Naudi A, Portero-Otin M, Dacremont G, Cartier N, Wanders R, Kemp S, Mandel JL, Wirth B, Pamplona R, Aubourg P, Pujol A (2010) Valproic acid induces antioxidant effects in X-linked adrenoleukodystrophy. Hum Mol Genet 19(10):2005–2014.  https://doi.org/10.1093/hmg/ddq082CrossRefPubMedGoogle Scholar
  55. Fransen M, Nordgren M, Wang B, Apanasets O (2012) Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim Biophys Acta 1822(9):1363–1373.  https://doi.org/10.1016/j.bbadis.2011.12.001CrossRefPubMedGoogle Scholar
  56. Fujiki Y, Miyata N, Mukai S, Okumoto K, Cheng EH (2017) BAK regulates catalase release from peroxisomes. Mol Cell Oncol 4(3):e1306610.  https://doi.org/10.1080/23723556.2017.1306610CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gasmi L, McLennan AG (2001) The mouse Nudt7 gene encodes a peroxisomal nudix hydrolase specific for coenzyme A and its derivatives. Biochem J 357(Pt 1):33–38CrossRefGoogle Scholar
  58. Geillon F, Gondcaille C, Raas Q, Dias AMM, Pecqueur D, Truntzer C, Lucchi G, Ducoroy P, Falson P, Savary S, Trompier D (2017) Peroxisomal ATP-binding cassette transporters form mainly tetramers. J Biol Chem 292(17):6965–6977.  https://doi.org/10.1074/jbc.M116.772806CrossRefPubMedPubMedCentralGoogle Scholar
  59. Genin EC, Geillon F, Gondcaille C, Athias A, Gambert P, Trompier D, Savary S (2011) Substrate specificity overlap and interaction between adrenoleukodystrophy protein (ALDP/ABCD1) and adrenoleukodystrophy-related protein (ALDRP/ABCD2). J Biol Chem 286(10):8075–8084.  https://doi.org/10.1074/jbc.M110.211912CrossRefPubMedPubMedCentralGoogle Scholar
  60. Giordano CR, Terlecky LJ, Bollig-Fischer A, Walton PA, Terlecky SR (2014) Amyloid-beta neuroprotection mediated by a targeted antioxidant. Sci Rep 4:4983.  https://doi.org/10.1038/srep04983CrossRefPubMedPubMedCentralGoogle Scholar
  61. Glorieux C, Calderon PB (2017) Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem 398(10):1095–1108.  https://doi.org/10.1515/hsz-2017-0131CrossRefPubMedGoogle Scholar
  62. Guimaraes CP, Domingues P, Aubourg P, Fouquet F, Pujol A, Jimenez-Sanchez G, Sa-Miranda C, Azevedo JE (2004) Mouse liver PMP70 and ALDP: homomeric interactions prevail in vivo. Biochim Biophys Acta 1689(3):235–243.  https://doi.org/10.1016/j.bbadis.2004.04.001CrossRefPubMedGoogle Scholar
  63. Guimaraes CP, Sa-Miranda C, Azevedo JE (2005) Probing substrate-induced conformational alterations in adrenoleukodystrophy protein by proteolysis. J Hum Genet 50(2):99–105.  https://doi.org/10.1007/s10038-004-0226-4CrossRefPubMedGoogle Scholar
  64. Hahnel D, Beyer K, Engelmann B (1999) Inhibition of peroxyl radical-mediated lipid oxidation by plasmalogen phospholipids and alpha-tocopherol. Free Radic Biol Med 27(9-10):1087–1094CrossRefGoogle Scholar
  65. Hartl FU, Just WW (1987) Integral membrane polypeptides of rat liver peroxisomes: topology and response to different metabolic states. Arch Biochem Biophys 255(1):109–119CrossRefGoogle Scholar
  66. He D, Barnes S, Falany CN (2003) Rat liver bile acid CoA:amino acid N-acyltransferase: expression, characterization, and peroxisomal localization. J Lipid Res 44(12):2242–2249.  https://doi.org/10.1194/jlr.M300128-JLR200CrossRefPubMedGoogle Scholar
  67. Hekimi S, Lapointe J, Wen Y (2011) Taking a “good” look at free radicals in the aging process. Trends Cell Biol 21(10):569–576.  https://doi.org/10.1016/j.tcb.2011.06.008CrossRefPubMedPubMedCentralGoogle Scholar
  68. Henne WM, Reese ML, Goodman JM (2018) The assembly of lipid droplets and their roles in challenged cells. EMBO J 37(12):e98947.  https://doi.org/10.15252/embj.201898947CrossRefPubMedPubMedCentralGoogle Scholar
  69. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113.  https://doi.org/10.1146/annurev.cb.08.110192.000435CrossRefPubMedGoogle Scholar
  70. Hillebrand M, Verrier SE, Ohlenbusch A, Schafer A, Soling HD, Wouters FS, Gartner J (2007) Live cell FRET microscopy: homo- and heterodimerization of two human peroxisomal ABC transporters, the adrenoleukodystrophy protein (ALDP, ABCD1) and PMP70 (ABCD3). J Biol Chem 282(37):26997–27005.  https://doi.org/10.1074/jbc.M702122200CrossRefPubMedGoogle Scholar
  71. Holzinger A, Kammerer S, Berger J, Roscher AA (1997a) cDNA cloning and mRNA expression of the human adrenoleukodystrophy related protein (ALDRP), a peroxisomal ABC transporter. Biochem Biophys Res Commun 239(1):261–264.  https://doi.org/10.1006/bbrc.1997.7391CrossRefPubMedGoogle Scholar
  72. Holzinger A, Kammerer S, Roscher AA (1997b) Primary structure of human PMP69, a putative peroxisomal ABC-transporter. Biochem Biophys Res Commun 237(1):152–157.  https://doi.org/10.1006/bbrc.1997.7102CrossRefPubMedGoogle Scholar
  73. Honsho M, Fujiki Y (2017) Plasmalogen homeostasis - regulation of plasmalogen biosynthesis and its physiological consequence in mammals. FEBS Lett 591(18):2720–2729.  https://doi.org/10.1002/1873-3468.12743CrossRefPubMedGoogle Scholar
  74. Honsho M, Asaoku S, Fukumoto K, Fujiki Y (2013) Topogenesis and homeostasis of fatty acyl-CoA reductase 1. J Biol Chem 288(48):34588–34598.  https://doi.org/10.1074/jbc.M113.498345CrossRefPubMedPubMedCentralGoogle Scholar
  75. Hosoi KI, Miyata N, Mukai S, Furuki S, Okumoto K, Cheng EH, Fujiki Y (2017) The VDAC2-BAK axis regulates peroxisomal membrane permeability. J Cell Biol 216(3):709–722.  https://doi.org/10.1083/jcb.201605002CrossRefPubMedPubMedCentralGoogle Scholar
  76. Hu A, Zhao XT, Tu H, Xiao T, Fu T, Wang Y, Liu Y, Shi XJ, Luo J, Song BL (2018) PIP4K2A regulates intracellular cholesterol transport through modulating PI(4,5)P2 homeostasis. J Lipid Res 59(3):507–514.  https://doi.org/10.1194/jlr.M082149CrossRefPubMedPubMedCentralGoogle Scholar
  77. Hua R, Cheng D, Coyaud E, Freeman S, Di Pietro E, Wang Y, Vissa A, Yip CM, Fairn GD, Braverman N, Brumell JH, Trimble WS, Raught B, Kim PK (2017) VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis. J Cell Biol 216(2):367–377.  https://doi.org/10.1083/jcb.201608128CrossRefPubMedPubMedCentralGoogle Scholar
  78. Hunt MC, Siponen MI, Alexson SE (2012) The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim Biophys Acta 1822(9):1397–1410.  https://doi.org/10.1016/j.bbadis.2012.03.009CrossRefPubMedGoogle Scholar
  79. Hunt MC, Tillander V, Alexson SE (2014) Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes. Biochimie 98:45–55.  https://doi.org/10.1016/j.biochi.2013.12.018CrossRefPubMedGoogle Scholar
  80. Iida R, Yasuda T, Tsubota E, Takatsuka H, Masuyama M, Matsuki T, Kishi K (2003) M-LP, Mpv17-like protein, has a peroxisomal membrane targeting signal comprising a transmembrane domain and a positively charged loop and up-regulates expression of the manganese superoxide dismutase gene. J Biol Chem 278(8):6301–6306.  https://doi.org/10.1074/jbc.M210886200CrossRefPubMedGoogle Scholar
  81. Iida R, Yasuda T, Tsubota E, Takatsuka H, Matsuki T, Kishi K (2006) Human Mpv17-like protein is localized in peroxisomes and regulates expression of antioxidant enzymes. Biochem Biophys Res Commun 344(3):948–954.  https://doi.org/10.1016/j.bbrc.2006.04.008CrossRefPubMedGoogle Scholar
  82. Iida R, Ueki M, Yasuda T (2018) Knockout of Mpv17-like protein (M-LPH) gene in human hepatoma cells results in impairment of mtDNA integrity through reduction of TFAM, OGG1, and LIG3 at the protein levels. Oxid Med Cell Longev 2018:6956414.  https://doi.org/10.1155/2018/6956414CrossRefPubMedPubMedCentralGoogle Scholar
  83. Imanaka T, Aihara K, Takano T, Yamashita A, Sato R, Suzuki Y, Yokota S, Osumi T (1999) Characterization of the 70-kDa peroxisomal membrane protein, an ATP binding cassette transporter. J Biol Chem 274(17):11968–11976CrossRefGoogle Scholar
  84. Islinger M, Voelkl A, Fahimi HD, Schrader M (2018) The peroxisome: an update on mysteries 2.0. Histochem Cell Biol 150(5):443–471.  https://doi.org/10.1007/s00418-018-1722-5CrossRefPubMedPubMedCentralGoogle Scholar
  85. Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347(6294):645–650.  https://doi.org/10.1038/347645a0CrossRefGoogle Scholar
  86. Kagan JC (2012) Signaling organelles of the innate immune system. Cell 151(6):1168–1178.  https://doi.org/10.1016/j.cell.2012.11.011CrossRefPubMedPubMedCentralGoogle Scholar
  87. Kamijo K, Taketani S, Yokota S, Osumi T, Hashimoto T (1990) The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J Biol Chem 265(8):4534–4540PubMedGoogle Scholar
  88. Kashiwayama Y, Morita M, Kamijo K, Imanaka T (2002) Nucleotide-induced conformational changes of PMP70, an ATP binding cassette transporter on rat liver peroxisomal membranes. Biochem Biophys Res Commun 291(5):1245–1251.  https://doi.org/10.1006/bbrc.2002.6588CrossRefPubMedGoogle Scholar
  89. Kawaguchi K, Okamoto T, Morita M, Imanaka T (2016) Translocation of the ABC transporter ABCD4 from the endoplasmic reticulum to lysosomes requires the escort protein LMBD1. Sci Rep 6:30183.  https://doi.org/10.1038/srep30183CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kikuchi M, Hatano N, Yokota S, Shimozawa N, Imanaka T, Taniguchi H (2004) Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J Biol Chem 279(1):421–428.  https://doi.org/10.1074/jbc.M305623200CrossRefGoogle Scholar
  91. Kleinecke S, Richert S, de Hoz L, Brugger B, Kungl T, Asadollahi E, Quintes S, Blanz J, McGonigal R, Naseri K, Sereda MW, Sachsenheimer T, Luchtenborg C, Mobius W, Willison H, Baes M, Nave KA, Kassmann CM (2017) Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy. Elife 6:23332.  https://doi.org/10.7554/eLife.23332CrossRefGoogle Scholar
  92. Knoops B, Goemaere J, Van der Eecken V, Declercq JP (2011) Peroxiredoxin 5: structure, mechanism, and function of the mammalian atypical 2-Cys peroxiredoxin. Antioxid Redox Signal 15(3):817–829.  https://doi.org/10.1089/ars.2010.3584CrossRefPubMedGoogle Scholar
  93. Kodan A, Yamaguchi T, Nakatsu T, Matsuoka K, Kimura Y, Ueda K, Kato H (2019) Inward- and outward-facing X-ray crystal structures of homodimeric P-glycoprotein CmABCB1. Nat Commun 10(1):88.  https://doi.org/10.1038/s41467-018-08007-xCrossRefPubMedPubMedCentralGoogle Scholar
  94. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman JS, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325(5939):477–481.  https://doi.org/10.1126/science.1175088CrossRefPubMedPubMedCentralGoogle Scholar
  95. Kou J, Kovacs GG, Hoftberger R, Kulik W, Brodde A, Forss-Petter S, Honigschnabl S, Gleiss A, Brugger B, Wanders R, Just W, Budka H, Jungwirth S, Fischer P, Berger J (2011) Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathol 122(3):271–283.  https://doi.org/10.1007/s00401-011-0836-9CrossRefPubMedPubMedCentralGoogle Scholar
  96. Krick S, Shi S, Ju W, Faul C, Tsai SY, Mundel P, Bottinger EP (2008) Mpv17l protects against mitochondrial oxidative stress and apoptosis by activation of Omi/HtrA2 protease. Proc Natl Acad Sci U S A 105(37):14106–14111.  https://doi.org/10.1073/pnas.0801146105CrossRefPubMedPubMedCentralGoogle Scholar
  97. Lamhonwah AM, Ackerley CA, Tilups A, Edwards VD, Wanders RJ, Tein I (2005) OCTN3 is a mammalian peroxisomal membrane carnitine transporter. Biochem Biophys Res Commun 338(4):1966–1972.  https://doi.org/10.1016/j.bbrc.2005.10.170CrossRefPubMedGoogle Scholar
  98. Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, Weber AP (2008) Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. Plant Cell 20(12):3241–3257.  https://doi.org/10.1105/tpc.108.062042CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lismont C, Nordgren M, Van Veldhoven PP, Fransen M (2015) Redox interplay between mitochondria and peroxisomes. Front Cell Dev Biol 3:35.  https://doi.org/10.3389/fcell.2015.00035CrossRefPubMedPubMedCentralGoogle Scholar
  100. Liu LX, Janvier K, Berteaux-Lecellier V, Cartier N, Benarous R, Aubourg P (1999) Homo- and heterodimerization of peroxisomal ATP-binding cassette half-transporters. J Biol Chem 274(46):32738–32743CrossRefGoogle Scholar
  101. Lodhi IJ, Semenkovich CF (2014) Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab 19(3):380–392.  https://doi.org/10.1016/j.cmet.2014.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  102. Lombard-Platet G, Savary S, Sarde CO, Mandel JL, Chimini G (1996) A close relative of the adrenoleukodystrophy (ALD) gene codes for a peroxisomal protein with a specific expression pattern. Proc Natl Acad Sci U S A 93(3):1265–1269CrossRefGoogle Scholar
  103. Lopez-Erauskin J, Galino J, Ruiz M, Cuezva JM, Fabregat I, Cacabelos D, Boada J, Martinez J, Ferrer I, Pamplona R, Villarroya F, Portero-Otin M, Fourcade S, Pujol A (2013) Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Hum Mol Genet 22(16):3296–3305.  https://doi.org/10.1093/hmg/ddt186CrossRefPubMedGoogle Scholar
  104. Loughran PA, Stolz DB, Barrick SR, Wheeler DS, Friedman PA, Rachubinski RA, Watkins SC, Billiar TR (2013) PEX7 and EBP50 target iNOS to the peroxisome in hepatocytes. Nitric Oxide 31:9–19.  https://doi.org/10.1016/j.niox.2013.02.084CrossRefPubMedPubMedCentralGoogle Scholar
  105. Luo J, Liao YC, Xiao J, Song BL (2017) Measurement of cholesterol transfer from lysosome to peroxisome using an in vitro reconstitution assay. Methods Mol Biol 1583:141–161.  https://doi.org/10.1007/978-1-4939-6875-6_11CrossRefPubMedGoogle Scholar
  106. Mattiazzi Usaj M, Brloznik M, Kaferle P, Zitnik M, Wolinski H, Leitner F, Kohlwein SD, Zupan B, Petrovic U (2015) Genome-wide localization study of yeast Pex11 identifies peroxisome-mitochondria interactions through the ERMES complex. J Mol Biol 427(11):2072–2087.  https://doi.org/10.1016/j.jmb.2015.03.004CrossRefPubMedPubMedCentralGoogle Scholar
  107. McLennan AG (2006) The Nudix hydrolase superfamily. Cell Mol Life Sci 63(2):123–143.  https://doi.org/10.1007/s00018-005-5386-7CrossRefPubMedGoogle Scholar
  108. Mindthoff S, Grunau S, Steinfort LL, Girzalsky W, Hiltunen JK, Erdmann R, Antonenkov VD (2016) Peroxisomal Pex11 is a pore-forming protein homologous to TRPM channels. Biochim Biophys Acta 1863(2):271–283.  https://doi.org/10.1016/j.bbamcr.2015.11.013CrossRefPubMedGoogle Scholar
  109. Morisseau C, Hammock BD (2013) Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health. Annu Rev Pharmacol Toxicol 53:37–58.  https://doi.org/10.1146/annurev-pharmtox-011112-140244CrossRefPubMedGoogle Scholar
  110. Morita M, Imanaka T (2012) Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophys Acta 1822(9):1387–1396.  https://doi.org/10.1016/j.bbadis.2012.02.009CrossRefPubMedGoogle Scholar
  111. Morita M, Kurochkin IV, Motojima K, Goto S, Takano T, Okamura S, Sato R, Yokota S, Imanaka T (2000) Insulin-degrading enzyme exists inside of rat liver peroxisomes and degrades oxidized proteins. Cell Struct Funct 25(5):309–315CrossRefGoogle Scholar
  112. Morita M, Shinbo S, Asahi A, Imanaka T (2012) Very long chain fatty acid beta-oxidation in astrocytes: contribution of the ABCD1-dependent and -independent pathways. Biol Pharm Bull 35(11):1972–1979CrossRefGoogle Scholar
  113. Mosser J, Douar AM, Sarde CO, Kioschis P, Feil R, Moser H, Poustka AM, Mandel JL, Aubourg P (1993) Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361(6414):726–730.  https://doi.org/10.1038/361726a0CrossRefGoogle Scholar
  114. Murakami K, Ichinohe Y, Koike M, Sasaoka N, Iemura S, Natsume T, Kakizuka A (2013) VCP Is an integral component of a novel feedback mechanism that controls intracellular localization of catalase and H2O2 Levels. PLoS One 8(2):e56012.  https://doi.org/10.1371/journal.pone.0056012CrossRefPubMedPubMedCentralGoogle Scholar
  115. Nagan N, Zoeller RA (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40(3):199–229CrossRefGoogle Scholar
  116. Nakagawa T, Imanaka T, Morita M, Ishiguro K, Yurimoto H, Yamashita A, Kato N, Sakai Y (2000) Peroxisomal membrane protein Pmp47 is essential in the metabolism of middle-chain fatty acid in yeast peroxisomes and is associated with peroxisome proliferation. J Biol Chem 275(5):3455–3461CrossRefGoogle Scholar
  117. Nell HJ, Au JL, Giordano CR, Terlecky SR, Walton PA, Whitehead SN, Cechetto DF (2017) Targeted antioxidant, catalase-SKL, reduces beta-amyloid toxicity in the rat brain. Brain Pathol 27(1):86–94.  https://doi.org/10.1111/bpa.12368CrossRefPubMedGoogle Scholar
  118. Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, Boulant S, Gehrke L, Cossart P, Kagan JC (2014) Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol 15(8):717–726.  https://doi.org/10.1038/ni.2915CrossRefPubMedPubMedCentralGoogle Scholar
  119. Ofman R, Speijer D, Leen R, Wanders RJ (2006) Proteomic analysis of mouse kidney peroxisomes: identification of RP2p as a peroxisomal nudix hydrolase with acyl-CoA diphosphatase activity. Biochem J 393(Pt 2):537–543.  https://doi.org/10.1042/BJ20050893CrossRefPubMedGoogle Scholar
  120. Okamoto T, Kawaguchi K, Watanabe S, Agustina R, Ikejima T, Ikeda K, Nakano M, Morita M, Imanaka T (2018) Characterization of human ATP-binding cassette protein subfamily D reconstituted into proteoliposomes. Biochem Biophys Res Commun 496(4):1122–1127.  https://doi.org/10.1016/j.bbrc.2018.01.153CrossRefGoogle Scholar
  121. Palmieri L, Rottensteiner H, Girzalsky W, Scarcia P, Palmieri F, Erdmann R (2001) Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J 20(18):5049–5059.  https://doi.org/10.1093/emboj/20.18.5049CrossRefPubMedPubMedCentralGoogle Scholar
  122. Papadopoulos C, Orso G, Mancuso G, Herholz M, Gumeni S, Tadepalle N, Jungst C, Tzschichholz A, Schauss A, Honing S, Trifunovic A, Daga A, Rugarli EI (2015) Spastin binds to lipid droplets and affects lipid metabolism. PLoS Genet 11(4):e1005149.  https://doi.org/10.1371/journal.pgen.1005149CrossRefPubMedPubMedCentralGoogle Scholar
  123. Pellicoro A, van den Heuvel FA, Geuken M, Moshage H, Jansen PL, Faber KN (2007) Human and rat bile acid-CoA:amino acid N-acyltransferase are liver-specific peroxisomal enzymes: implications for intracellular bile salt transport. Hepatology 45(2):340–348.  https://doi.org/10.1002/hep.21528CrossRefPubMedGoogle Scholar
  124. Petrillo S, Piemonte F, Pastore A, Tozzi G, Aiello C, Pujol A, Cappa M, Bertini E (2013) Glutathione imbalance in patients with X-linked adrenoleukodystrophy. Mol Genet Metab 109(4):366–370.  https://doi.org/10.1016/j.ymgme.2013.05.009CrossRefPubMedPubMedCentralGoogle Scholar
  125. Pfeffer SR (2019) NPC intracellular cholesterol transporter 1 (NPC1)-mediated cholesterol export from lysosomes. J Biol Chem 294(5):1706–1709.  https://doi.org/10.1074/jbc.TM118.004165CrossRefPubMedGoogle Scholar
  126. Pinti M, Gibellini L, Liu Y, Xu S, Lu B, Cossarizza A (2015) Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol Life Sci 72(24):4807–4824.  https://doi.org/10.1007/s00018-015-2039-3CrossRefPubMedGoogle Scholar
  127. Pomatto LC, Raynes R, Davies KJ (2017) The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev Camb Philos Soc 92(2):739–753.  https://doi.org/10.1111/brv.12253CrossRefPubMedPubMedCentralGoogle Scholar
  128. Pujol A, Ferrer I, Camps C, Metzger E, Hindelang C, Callizot N, Ruiz M, Pampols T, Giros M, Mandel JL (2004) Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. Hum Mol Genet 13(23):2997–3006.  https://doi.org/10.1093/hmg/ddh323CrossRefPubMedGoogle Scholar
  129. Raychaudhuri S, Prinz WA (2008) Nonvesicular phospholipid transfer between peroxisomes and the endoplasmic reticulum. Proc Natl Acad Sci U S A 105(41):15785–15790.  https://doi.org/10.1073/pnas.0808321105CrossRefPubMedPubMedCentralGoogle Scholar
  130. Reilly SJ, Tillander V, Ofman R, Alexson SE, Hunt MC (2008) The nudix hydrolase 7 is an acyl-CoA diphosphatase involved in regulating peroxisomal coenzyme A homeostasis. J Biochem 144(5):655–663.  https://doi.org/10.1093/jb/mvn114CrossRefPubMedGoogle Scholar
  131. Reiss D, Beyer K, Engelmann B (1997) Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem J 323(Pt 3):807–814CrossRefGoogle Scholar
  132. Reiser G, Schönfeld P, Kahlert S (2006) Mechanism of toxicity of the branched-chain fatty acid phytanic acid, a marker of Refsum disease, in astrocytes involves mitochondrial impairment. Int J Dev Neurosci 24(2–3):113–122. https://doi.org/10.1016/j.ijdevneu.2005.11.002CrossRefPubMedGoogle Scholar
  133. Rembacz KP, Woudenberg J, Hoekstra M, Jonkers EZ, van den Heuvel FA, Buist-Homan M, Woudenberg-Vrenken TE, Rohacova J, Marin ML, Miranda MA, Moshage H, Stellaard F, Faber KN (2010) Unconjugated bile salts shuttle through hepatocyte peroxisomes for taurine conjugation. Hepatology 52(6):2167–2176.  https://doi.org/10.1002/hep.23954CrossRefPubMedGoogle Scholar
  134. van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14(14):3480–3486CrossRefGoogle Scholar
  135. van Roermund CW, Visser WF, Ijlst L, Waterham HR, Wanders RJ (2011) Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid beta-oxidation. Biochim Biophys Acta 1811(3):148–152.  https://doi.org/10.1016/j.bbalip.2010.11.010CrossRefPubMedGoogle Scholar
  136. van Roermund CW, Ijlst L, Majczak W, Waterham HR, Folkerts H, Wanders RJ, Hellingwerf KJ (2012) Peroxisomal fatty acid uptake mechanism in Saccharomyces cerevisiae. J Biol Chem 287(24):20144–20153.  https://doi.org/10.1074/jbc.M111.332833CrossRefPubMedPubMedCentralGoogle Scholar
  137. Rokka A, Antonenkov VD, Soininen R, Immonen HL, Pirila PL, Bergmann U, Sormunen RT, Weckstrom M, Benz R, Hiltunen JK (2009) Pxmp2 is a channel-forming protein in Mammalian peroxisomal membrane. PLoS One 4(4):e5090.  https://doi.org/10.1371/journal.pone.0005090CrossRefPubMedPubMedCentralGoogle Scholar
  138. Ronicke S, Kruska N, Kahlert S, Reiser G (2009) The influence of the branched-chain fatty acids pristanic acid and Refsum disease-associated phytanic acid on mitochondrial functions and calcium regulation of hippocampal neurons, astrocytes, and oligodendrocytes. Neurobiol Dis 36(2):401–410.  https://doi.org/10.1016/j.nbd.2009.08.005CrossRefPubMedGoogle Scholar
  139. Rutsch F, Gailus S, Miousse IR, Suormala T, Sagne C, Toliat MR, Nurnberg G, Wittkampf T, Buers I, Sharifi A, Stucki M, Becker C, Baumgartner M, Robenek H, Marquardt T, Hohne W, Gasnier B, Rosenblatt DS, Fowler B, Nurnberg P (2009) Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B12 metabolism. Nat Genet 41(2):234–239.  https://doi.org/10.1038/ng.294CrossRefPubMedGoogle Scholar
  140. Salpietro V, Phadke R, Saggar A, Hargreaves IP, Yates R, Fokoloros C, Mankad K, Hertecant J, Ruggieri M, McCormick D, Kinali M (2015) Zellweger syndrome and secondary mitochondrial myopathy. Eur J Pediatr 174(4):557–563.  https://doi.org/10.1007/s00431-014-2431-2CrossRefPubMedGoogle Scholar
  141. Schrader M, Fahimi HD (2006) Peroxisomes and oxidative stress. Biochim Biophys Acta 1763(12):1755–1766.  https://doi.org/10.1016/j.bbamcr.2006.09.006CrossRefPubMedGoogle Scholar
  142. Schrader M, Costello J, Godinho LF, Islinger M (2015) Peroxisome-mitochondria interplay and disease. J Inherit Metab Dis 38(4):681–702.  https://doi.org/10.1007/s10545-015-9819-7CrossRefPubMedGoogle Scholar
  143. Schrader M, Kamoshita M, Islinger M (2019) Organelle interplay-peroxisome interactions in health and disease. J Inherit Metab Dis.  https://doi.org/10.1002/jimd.12083
  144. Schuldiner M, Bohnert M (2017) A different kind of love - lipid droplet contact sites. Biochim Biophys Acta Mol Cell Biol Lip 1862(10 Pt B):1188–1196.  https://doi.org/10.1016/j.bbalip.2017.06.005CrossRefGoogle Scholar
  145. Schuldiner M, Zalckvar E (2017) Incredibly close-a newly identified peroxisome-ER contact site in humans. J Cell Biol 216(2):287–289.  https://doi.org/10.1083/jcb.201701072CrossRefPubMedPubMedCentralGoogle Scholar
  146. Shai N, Schuldiner M, Zalckvar E (2016) No peroxisome is an island - peroxisome contact sites. Biochim Biophys Acta 1863(5):1061–1069.  https://doi.org/10.1016/j.bbamcr.2015.09.016CrossRefPubMedGoogle Scholar
  147. Shai N, Yifrach E, van Roermund CWT, Cohen N, Bibi C, IJlst IJ, Cavellini L, Meurisse J, Schuster R, Zada L, Mari MC, Reggiori FM, Hughes AL, Escobar-Henriques M, Cohen MM, Waterham HR, Wanders RJA, Schuldiner M, Zalckvar E (2018) Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact. Nat Commun 9(1):1761.  https://doi.org/10.1038/s41467-018-03957-8CrossRefPubMedPubMedCentralGoogle Scholar
  148. Shani N, Jimenez-Sanchez G, Steel G, Dean M, Valle D (1997) Identification of a fourth half ABC transporter in the human peroxisomal membrane. Hum Mol Genet 6(11):1925–1931PubMedGoogle Scholar
  149. Sleat DE, Wiseman JA, El-Banna M, Price SM, Verot L, Shen MM, Tint GS, Vanier MT, Walkley SU, Lobel P (2004) Genetic evidence for nonredundant functional cooperativity between NPC1 and NPC2 in lipid transport. Proc Natl Acad Sci U S A 101(16):5886–5891.  https://doi.org/10.1073/pnas.0308456101CrossRefPubMedPubMedCentralGoogle Scholar
  150. Spinazzola A, Viscomi C, Fernandez-Vizarra E, Carrara F, D’Adamo P, Calvo S, Marsano RM, Donnini C, Weiher H, Strisciuglio P, Parini R, Sarzi E, Chan A, DiMauro S, Rotig A, Gasparini P, Ferrero I, Mootha VK, Tiranti V, Zeviani M (2006) MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion. Nat Genet 38(5):570–575.  https://doi.org/10.1038/ng1765CrossRefPubMedGoogle Scholar
  151. Sztriha L, Al-Gazali LI, Wanders RJ, Ofman R, Nork M, Lestringant GG (2000) Abnormal myelin formation in rhizomelic chondrodysplasia punctata type 2 (DHAPAT-deficiency). Dev Med Child Neurol 42(7):492–495CrossRefGoogle Scholar
  152. Tanaka AR, Tanabe K, Morita M, Kurisu M, Kasiwayama Y, Matsuo M, Kioka N, Amachi T, Imanaka T, Ueda K (2002) ATP binding/hydrolysis by and phosphorylation of peroxisomal ATP-binding cassette proteins PMP70 (ABCD3) and adrenoleukodystrophy protein (ABCD1). J Biol Chem 277(42):40142–40147.  https://doi.org/10.1074/jbc.M205079200CrossRefPubMedGoogle Scholar
  153. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374.  https://doi.org/10.1089/ars.2007.1957CrossRefPubMedPubMedCentralGoogle Scholar
  154. Tripathi DN, Walker CL (2016) The peroxisome as a cell signaling organelle. Curr Opin Cell Biol 39:109–112.  https://doi.org/10.1016/j.ceb.2016.02.017CrossRefPubMedPubMedCentralGoogle Scholar
  155. Trott A, Morano KA (2004) SYM1 is the stress-induced Saccharomyces cerevisiae ortholog of the mammalian kidney disease gene Mpv17 and is required for ethanol metabolism and tolerance during heat shock. Eukaryot Cell 3(3):620–631.  https://doi.org/10.1128/EC.3.3.620-631.2004CrossRefPubMedPubMedCentralGoogle Scholar
  156. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, Cohen AR, Davidson MW, Betzig E, Lippincott-Schwartz J (2017) Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546(7656):162–167.  https://doi.org/10.1038/nature22369CrossRefPubMedPubMedCentralGoogle Scholar
  157. Vamecq J, Cherkaoui-Malki M, Andreoletti P, Latruffe N (2014) The human peroxisome in health and disease: the story of an oddity becoming a vital organelle. Biochimie 98:4–15.  https://doi.org/10.1016/j.biochi.2013.09.019CrossRefGoogle Scholar
  158. Van Veldhoven PP, Just WW, Mannaerts GP (1987) Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming protein. J Biol Chem 262(9):4310–4318PubMedGoogle Scholar
  159. Vance JE (2015) Phospholipid synthesis and transport in mammalian cells. Traffic 16(1):1–18.  https://doi.org/10.1111/tra.12230CrossRefPubMedGoogle Scholar
  160. Vapola MH, Rokka A, Sormunen RT, Alhonen L, Schmitz W, Conzelmann E, Warri A, Grunau S, Antonenkov VD, Hiltunen JK (2014) Peroxisomal membrane channel Pxmp2 in the mammary fat pad is essential for stromal lipid homeostasis and for development of mammary gland epithelium in mice. Dev Biol 391(1):66–80.  https://doi.org/10.1016/j.ydbio.2014.03.022CrossRefPubMedGoogle Scholar
  161. Vargas CR, Wajner M, Sirtori LR, Goulart L, Chiochetta M, Coelho D, Latini A, Llesuy S, Bello-Klein A, Giugliani R, Deon M, Mello CF (2004) Evidence that oxidative stress is increased in patients with X-linked adrenoleukodystrophy. Biochim Biophys Acta 1688(1):26–32CrossRefGoogle Scholar
  162. Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3(3):281–290CrossRefGoogle Scholar
  163. Violante S, Achetib N, van Roermund CWT, Hagen J, Dodatko T, Vaz FM, Waterham HR, Chen H, Baes M, Yu C, Argmann CA, Houten SM (2019) Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB J 33(3):4355–4364.  https://doi.org/10.1096/fj.201801498RCrossRefPubMedGoogle Scholar
  164. Visser WF, van Roermund CW, Waterham HR, Wanders RJ (2002) Identification of human PMP34 as a peroxisomal ATP transporter. Biochem Biophys Res Commun 299(3):494–497CrossRefGoogle Scholar
  165. Visser WF, van Roermund CW, Ijlst L, Waterham HR, Wanders RJ (2007) Demonstration of bile acid transport across the mammalian peroxisomal membrane. Biochem Biophys Res Commun 357(2):335–340.  https://doi.org/10.1016/j.bbrc.2007.03.083CrossRefPubMedGoogle Scholar
  166. Walbrecq G, Wang B, Becker S, Hannotiau A, Fransen M, Knoops B (2015) Antioxidant cytoprotection by peroxisomal peroxiredoxin-5. Free Radic Biol Med 84:215–226.  https://doi.org/10.1016/j.freeradbiomed.2015.02.032CrossRefPubMedGoogle Scholar
  167. Walker CL, Pomatto LCD, Tripathi DN, Davies KJA (2018) Redox regulation of homeostasis and proteostasis in peroxisomes. Physiol Rev 98(1):89–115.  https://doi.org/10.1152/physrev.00033.2016CrossRefPubMedGoogle Scholar
  168. Wallner S, Schmitz G (2011) Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids 164(6):573–589.  https://doi.org/10.1016/j.chemphyslip.2011.06.008CrossRefPubMedGoogle Scholar
  169. Walton PA, Pizzitelli M (2012) Effects of peroxisomal catalase inhibition on mitochondrial function. Front Physiol 3:108.  https://doi.org/10.3389/fphys.2012.00108CrossRefPubMedPubMedCentralGoogle Scholar
  170. Walton PA, Brees C, Lismont C, Apanasets O, Fransen M (2017) The peroxisomal import receptor PEX5 functions as a stress sensor, retaining catalase in the cytosol in times of oxidative stress. Biochim Biophys Acta Mol Cell Res 1864(10):1833–1843.  https://doi.org/10.1016/j.bbamcr.2017.07.013CrossRefPubMedGoogle Scholar
  171. Wanders RJ (2014) Metabolic functions of peroxisomes in health and disease. Biochimie 98:36–44.  https://doi.org/10.1016/j.biochi.2013.08.022CrossRefPubMedGoogle Scholar
  172. Wanders RJ, Komen J, Ferdinandusse S (2011) Phytanic acid metabolism in health and disease. Biochim Biophys Acta 1811(9):498–507.  https://doi.org/10.1016/j.bbalip.2011.06.006CrossRefPubMedGoogle Scholar
  173. Wanders RJ, Waterham HR, Ferdinandusse S (2015) Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev Biol 3:83.  https://doi.org/10.3389/fcell.2015.00083CrossRefPubMedGoogle Scholar
  174. Wang B, Van Veldhoven PP, Brees C, Rubio N, Nordgren M, Apanasets O, Kunze M, Baes M, Agostinis P, Fransen M (2013) Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radic Biol Med 65:882–894.  https://doi.org/10.1016/j.freeradbiomed.2013.08.173CrossRefPubMedGoogle Scholar
  175. Waterham HR, Ferdinandusse S, Wanders RJ (2016) Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta 1863(5):922–933.  https://doi.org/10.1016/j.bbamcr.2015.11.015CrossRefPubMedGoogle Scholar
  176. Weiher H, Noda T, Gray DA, Sharpe AH, Jaenisch R (1990) Transgenic mouse model of kidney disease: insertional inactivation of ubiquitously expressed gene leads to nephrotic syndrome. Cell 62(3):425–434CrossRefGoogle Scholar
  177. Weiher H, Pircher H, Jansen-Durr P, Hegenbarth S, Knolle P, Grunau S, Vapola M, Hiltunen JK, Zwacka RM, Schmelzer E, Reumann K, Will H (2016) A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells. BMC Res Notes 9:128.  https://doi.org/10.1186/s13104-016-1939-0CrossRefPubMedPubMedCentralGoogle Scholar
  178. Wiesinger C, Kunze M, Regelsberger G, Forss-Petter S, Berger J (2013) Impaired very long-chain acyl-CoA beta-oxidation in human X-linked adrenoleukodystrophy fibroblasts is a direct consequence of ABCD1 transporter dysfunction. J Biol Chem 288(26):19269–19279.  https://doi.org/10.1074/jbc.M112.445445CrossRefPubMedPubMedCentralGoogle Scholar
  179. Wolvetang EJ, Tager JM, Wanders RJ (1990) Latency of the peroxisomal enzyme acyl-CoA:dihydroxyacetonephosphate acyltransferase in digitonin-permeabilized fibroblasts: the effect of ATP and ATPase inhibitors. Biochem Biophys Res Commun 170(3):1135–1143CrossRefGoogle Scholar
  180. Yagita Y, Shinohara K, Abe Y, Nakagawa K, Al-Owain M, Alkuraya FS, Fujiki Y (2017) Deficiency of a retinal dystrophy protein, acyl-CoA binding domain-containing 5 (ACBD5), impairs peroxisomal beta-oxidation of very-long-chain fatty acids. J Biol Chem 292(2):691–705.  https://doi.org/10.1074/jbc.M116.760090CrossRefGoogle Scholar
  181. Yakunin E, Moser A, Loeb V, Saada A, Faust P, Crane DI, Baes M, Sharon R (2010) alpha-Synuclein abnormalities in mouse models of peroxisome biogenesis disorders. J Neurosci Res 88(4):866–876.  https://doi.org/10.1002/jnr.22246CrossRefPubMedPubMedCentralGoogle Scholar
  182. Zhang SO, Trimble R, Guo F, Mak HY (2010) Lipid droplets as ubiquitous fat storage organelles in C. elegans. BMC Cell Biol 11:96.  https://doi.org/10.1186/1471-2121-11-96CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan
  2. 2.Faculty of Pharmaceutical SciencesHiroshima International UniversityKureJapan
  3. 3.University of ToyamaToyamaJapan

Personalised recommendations