Advertisement

Introduction

  • Maohui LuoEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

China building sector has been growing rapidly in recent years. From 2000 to 2013, the urban residential area increased from 9.5 to 23.4 billion m2. Figure 1.1 shows that Chinese total building energy consumption increased from 320 to 756 million tce. Under this context, how to effectively control building energy consumption and improve building environment quality has become a hot topic.

References

  1. 1.
    Tsinghua University Building Energy Conservation Research Center (2015) China building energy conservation annual development research report, BeijingGoogle Scholar
  2. 2.
    National Bureau of Statistics of China (2018) China statistical yearbooks. China Statistical Press, Beijing, 1990–2014. Available at: http://data.stats.gov.cn. Accessed 26 Apr 2018
  3. 3.
    Yang L (2010) Architectural climatology. China Building Industry Press, BeijingGoogle Scholar
  4. 4.
    Yang L (2003) Research on building climate analysis and design strategy. Ph.D. thesis. Xi’an University of Architecture and Technology, Xi’anGoogle Scholar
  5. 5.
    Lin Y (2014) Climate adaptation of China’s climate and human thermal comfort. J Xi’an Univ Archit Technol 46(2):251–255Google Scholar
  6. 6.
    Davis L, Gertler P (2015) Contribution of air conditioning adoption to future energy use under global warming. Proc Natl Acad Sci USA 112(19):5962–5967CrossRefGoogle Scholar
  7. 7.
    Energy Information Administration (EIA) (2018) Residential energy consumption survey. Available at: http://www.eia.doe.gov. Accessed 26 Apr 2018
  8. 8.
    Statistics Japan, National Survey of Family Income and Expenditure (2018) Available at: http://www.stat.go.jp/english/index.html. Accessed 26 Apr 2018
  9. 9.
    Akpinar-Ferrand E, Singh A (2010) Modeling increased demand of energy for air conditioners and consequent CO2 emissions to minimize health risks due to climate change in India. Environ. Sci. Pol. 13(8):702–712CrossRefGoogle Scholar
  10. 10.
    Wikipedia (2016) Air conditioning: development of mechanical cooling (2016-01-26). https://en.wikipedia.org/wiki/Air_conditioning#cite_note-13
  11. 11.
    Fanger PO (1970) Thermal comfort. Analysis and application in environment engineering. Danish Technology Press, CopenhagenGoogle Scholar
  12. 12.
    Technical Committee ISO/TC 159 and Technical Committee CEN/TC 122. ISO 7730 (2005) Ergonomics of the thermal environment—analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. European Committee for Standardization, UKGoogle Scholar
  13. 13.
    ASHRAE (2013) Thermal environmental conditions for human occupancy. ASHRAE Standard 55, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GeorgiaGoogle Scholar
  14. 14.
    CEN (2007) Indoor environmental input parameters for design and assessment of energy performance of buildings: addressing indoor air quality, thermal environment, lighting and acoustics. EN 15251, European Committee for Standardization, BrusselsGoogle Scholar
  15. 15.
    GB/T (2012) Evaluation standard for indoor thermal environment in civil buildings, GB/T 50785. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Beijing (in Chinese)Google Scholar
  16. 16.
    Humphreys MA (1976) Field studies of thermal comfort compared and applied. J Inst Heat Vent Eng 44(1):5–27Google Scholar
  17. 17.
    Emmerich S, Polidoro B, Axley J (2011) Impact of adaptive thermal comfort on climatic suitability of natural ventilation of office buildings. Energy Build 43(9):2101–2107CrossRefGoogle Scholar
  18. 18.
    Barlow S, Fiala D (2007) Occupant comfort in UK offices: how adaptive comfort theories might influence future low energy office refurbishment strategies. Energy Build 39:837–846CrossRefGoogle Scholar
  19. 19.
    Indraganti M (2010) Using the adaptive model of thermal comfort for obtaining indoor neutral temperature: findings from a field study in Hyderabad, India. Build Environ 45:519–536CrossRefGoogle Scholar
  20. 20.
    Loonen R, Treka M, Costola D, Hensen J (2013) Climate adaptive building shells: state-of-the-art and future challenges. Renew Sustain Energy Rev 25:483–493Google Scholar
  21. 21.
    de Dear RJ, Brager GS (2002) Thermal comfort in naturally ventilated buildings: revision to ASHRAE Standard 55. Energy Build 34:549–561CrossRefGoogle Scholar
  22. 22.
    Luo M, Cao B, Damiens J, Lin B, Ouyang Q et al (2015) Evaluating thermal comfort in mixed-mode buildings: a field study in a subtropical climate. Build Environ 88:46–54CrossRefGoogle Scholar
  23. 23.
    Deuble MP, de Dear RJ (2012) Mixed-mode buildings: a double standard in occupants’ comfort expectation. Build Environ 54:53–60CrossRefGoogle Scholar
  24. 24.
    Halawa E, van Hoof J (2012) The adaptive approach to thermal comfort: a critical overview. Energy Build 51:101–110CrossRefGoogle Scholar
  25. 25.
    de Dear R, Foldvary V, Zhang H, Arens E, Luo M et al (2016) Comfort is in the mind of the beholder: a review of progress in adaptive thermal comfort research over the past two decades. In: Proceedings of the 5th International Conference on Human-Environment System, Nagoya, JapanGoogle Scholar
  26. 26.
    Nikolopoulou M, Steemers K (2003) Thermal comfort and psychological adaptation as a guide of designing urban spaces. Energy Build 35(1):95–101CrossRefGoogle Scholar
  27. 27.
    Chen L, Ng E (2012) Outdoor thermal comfort and outdoor activities: a review of research in the past decade. Cities 29(2):118–125CrossRefGoogle Scholar
  28. 28.
    Akimoto T, Tanabe S, Yanai T, Sasaki M (2010) Thermal comfort and productivity—evaluation of workplace environment in a task conditioned office. Build Environ 45(1):45–50CrossRefGoogle Scholar
  29. 29.
    Cui W, Cao G, Ouyang Q, Zhu Y (2013) Influence of dynamic environment with difference airflows on human performance. Build Environ 62(62):124–132CrossRefGoogle Scholar
  30. 30.
    Lan L, Lian Z, Pan L (2010) The effects of air temperature on office worker’s well-being, workload and productivity—evaluated with subjective ratings. Appl Ergon 42(1):29–36CrossRefGoogle Scholar
  31. 31.
    Yang L, Yan H, Lam J (2014) Thermal comfort and building energy consumption implication—a review. Appl Energy 115(4):164–173CrossRefGoogle Scholar
  32. 32.
    Kwong Q, Adam N, Sahari B (2014) Thermal comfort assessment and potential for energy efficiency enhancement in modern tropical buildings: a review. Energy Build 68(314):547–557CrossRefGoogle Scholar
  33. 33.
    Taleghani M, Tenpierik M, Kurvers S et al (2013) A review into thermal comfort in buildings. Energy Rev 26(10):201–215Google Scholar
  34. 34.
    Zomorodian Z, Tahsildoost M (2016) Thermal comfort in educational buildings: a review article. Sustain Energy Rev 56:895–906CrossRefGoogle Scholar
  35. 35.
    Khodakarami J, Nasrollahi N (2012) Thermal comfort in hospitals—a literature review. Renew Sustain Energy Rev 16(6):4071–4077CrossRefGoogle Scholar
  36. 36.
    Cui W, Wu T, Ouyang Q, Zhu Y (2016) Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins. Indoor AirGoogle Scholar
  37. 37.
    Lan L, Lian Z (2016) Ten questions concerning thermal environment and sleep quality. Build Environ 99:252–259CrossRefGoogle Scholar
  38. 38.
    de Dear R, Akimoto T, Arens E, Brager G et al (2013) Progress in thermal comfort research over the last twenty years. Indoor Air 23(6):442–461CrossRefGoogle Scholar
  39. 39.
    Rupp R, Vasquez N, Lamberts R (2015) A review of human thermal comfort in built environment. Energy Build 105:178–205CrossRefGoogle Scholar
  40. 40.
    Huang J, Zhang H (2011) Human and thermal environment. Science Press, BeijingGoogle Scholar
  41. 41.
    Mclntyre DA (1978) Seven-point scales of warmth. Build Sci Eng 45:215–226Google Scholar
  42. 42.
    Zhang Y, Wang J, Chen H, Zhang J (2010) Thermal comfort in naturally ventilated buildings in hot-humide area. Build Environ 45(11):2562–2570CrossRefGoogle Scholar
  43. 43.
    Foldvary V, Cheung T, Zhang H et al (2018) Development of the ASHRAE global thermal comfort database II. Build Environ 142:502–512CrossRefGoogle Scholar
  44. 44.
    Gagge AP, Stolwijk JA, Hardy JD (1967) Comfort and thermal sensations and associated physiological responses at various ambient temperatures. Environ Res 1:1–20CrossRefGoogle Scholar
  45. 45.
    Berglund LG (1979) Thermal acceptability. ASHRAE Trans 85(2):825–834Google Scholar
  46. 46.
    Fanger PO (1967) Calculation of thermal comfort: introduction of a basic comfort equation. ASHRAE Trans 73III.4.1–III.4.20Google Scholar
  47. 47.
    Araújo VMD, Araújo EHS (1999) The applicability of ISO 7730 for the assessment of the thermal conditions of users of the buildings in Natal-Brazil. Proc Indoor Air 2:148–153Google Scholar
  48. 48.
    Yoon DW, Sohn JY, Cho KH (1999) The comparison on the thermal comfort sensation between the results of questionnaire survey and the calculation of the PMV values. Proc Indoor Air 2:137–141Google Scholar
  49. 49.
    Mayer E (1997) A new correlation between predicted mean votes (PMV) and predicted percentages of dissatisfied (PPD). Proc Healthy Build 2:189–194Google Scholar
  50. 50.
    Zhu Y et al (2016) Built Environment, 4th edn. Beijing, China Building Industry PressGoogle Scholar
  51. 51.
    Madsen T, Olesen B, Kristensen N (1984) Comparison between operative and equivalent temperature under typical indoor conditions. ASHRAE Trans 90(1):1077–1090Google Scholar
  52. 52.
    Gagge A, Fobelets A, Berglund L (1987) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731Google Scholar
  53. 53.
    Ye G, Yang C, Chen Y, Li Y (2003) A new approach for measuring predicted mean vote (PMV) and standard effective temperature (SET). Build Environ 38(1):33–44CrossRefGoogle Scholar
  54. 54.
    Huang L, Arens E, Zhang H, Zhu Y (2014) Applicability of whole-body heat balance models for evaluating thermal sensation under non-uniform air movement in warm environments. Build Environ 75:108–113CrossRefGoogle Scholar
  55. 55.
    Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56:421–428CrossRefGoogle Scholar
  56. 56.
    Budd G (2008) Wet-bulb globe temperature (WBGT)-its history and its limitations. J Sci Med Sport 11(1):20–32CrossRefGoogle Scholar
  57. 57.
    Schiavon S, Hoyt T, Piccioli A (2013) Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55. Build Simul 7(4):321–334CrossRefGoogle Scholar
  58. 58.
    Zhou X (2008) Study on influencing factors and evaluation indexes for human thermal sensation in warm conditions. Ph.D. thesis. Tsinghua University, BeijingGoogle Scholar
  59. 59.
    Cao B (2012) Research on the impacts of climate and built environment on human thermal adaptation. Ph.D. thesis. Tsinghua University, BeijingGoogle Scholar
  60. 60.
    Yan H (2013) Study on adaptive thermal comfort on the basis of regions and climates of China. Ph.D. thesis. Xi’an University of Architecture Technology, Xi’anGoogle Scholar
  61. 61.
    Brager G, Paliaga G, de Dear R (2004) Operable windows, personal control and occupant comfort. ASHRAE Trans 110(2):17–35Google Scholar
  62. 62.
    de Dear R, Leow K, Foo S (1991) Thermal comfort in the humid tropics: field experiments in air conditioned and naturally ventilated buildings in Singapore. Int J Biometeorol 34(4):259–265CrossRefGoogle Scholar
  63. 63.
    Candido C (2010) Indoor air movement acceptability and thermal comfort in hot-humid climates. Ph.D. thesis. Macquarie University, SydneyGoogle Scholar
  64. 64.
    Mustapa M, Zaki S, Rijal H, Hagishima A, Ali M (2016) Thermal comfort and occupant adaptive behavior in Japanese university buildings with free running and cooling mode offices during summer. Build Environ 105(15):332–342CrossRefGoogle Scholar
  65. 65.
    Wang Z, Fang X, Lian L (2002) Field experiments on occupant thermal comfort in Harbin. J Harbin Inst Technol 34(4):500–504Google Scholar
  66. 66.
    Zhang L (2010) Study on adaptation and thermal comfort of residents in Harbin. Master thesis. Harbin Institute of Technology, HarbinGoogle Scholar
  67. 67.
    Wang Z, Zhang L, Zhao J et al (2010) Thermal comfort for naturally ventilated residential buildings in Harbin. Energy Build 42(12):2406–2415CrossRefGoogle Scholar
  68. 68.
    Xia Y, Zhao R, Jiang Y (1999) Thermal comfort in naturally ventilated houses in Beijing. HV&AC 29(2):1–5Google Scholar
  69. 69.
    Yang Q (2010) Adaptive thermal comfort model for hot summer and cold winter zone. Master thesis. Xi’an University of Architecture Technology, Xi’anGoogle Scholar
  70. 70.
    Li J, Yang L, Liu J (2008) Adaptive thermal comfort model for hot summer and cold winter zone. HV&AC 38(7):20–24Google Scholar
  71. 71.
    Liu J (2007) Research on indoor thermal environment and human thermal comfort in natural ventilation buildings in hot summer and cold winter areas. Master thesis. Chongqing University, ChongqingGoogle Scholar
  72. 72.
    Ye J, Yang C, Li W et al (2006) Gender and thermal comfort in non-air-conditioned environment. HV&AC 36(5):17–21Google Scholar
  73. 73.
    Yang W (2007) Research on thermal comfort adaptation in residential buildings in hot summer and cold winter areas in summer. Master thesis. Hunan University, ChangshaGoogle Scholar
  74. 74.
    Chen H, Zhang Y et al (2010) Thermal comfort in naturally ventilated buildings in hot-humid area of China in summer: an example in Guangzhou. HV&AC 40(2):96–101Google Scholar
  75. 75.
    Fanger PO, Toftum J (2001) Thermal comfort in the future—excellence and expectation. In: Proceedings on moving thermal comfort standards into 21st century, WindsorGoogle Scholar
  76. 76.
    Arens E, Humphreys M, de Dear R, Zhang H (2010) Are ‘class A’ temperature requirements realistic or desirable? Build Environ 45:4–10CrossRefGoogle Scholar
  77. 77.
    de Dear R (1998) Global database of thermal comfort field experiments. ASHRAE Trans 104:1141–1152Google Scholar
  78. 78.
    Hensel H (1981) Thermoreception and temperature regulation. Academic Press Inc., BurlingtonGoogle Scholar
  79. 79.
    Cabanac M (1996) Pleasure and joy, and their role in human life. In: Proceedings of the 7th international conference on indoor air quality and climate, NagoyaGoogle Scholar
  80. 80.
    Zhao R (2000) Discussion on thermal comfort. HV&AC 30(3):25–26Google Scholar
  81. 81.
    de Dear R (2011) Revisiting an old hypothesis of human thermal perception: alliesthesia. Build Res Inf 39(2):108–117CrossRefGoogle Scholar
  82. 82.
    Parkinson T, de Dear R, Candido C (2016) Thermal pleasure in built environments: different thermoregulatory zones. Build Res Inf 44(1):20–33CrossRefGoogle Scholar
  83. 83.
    Zhu Y, Ouyang Q, Cao B, Zhou X, Yu J (2016) Dynamic thermal environment and thermal comfort. Indoor Air 26(1):125–147CrossRefGoogle Scholar
  84. 84.
    Zhu Y (2015) Thermal comfort: how much is too much. Global Archit 7:35–37Google Scholar
  85. 85.
    van Marken Lichtenbelt W, Vanhommerig J, Smelders N et al (2009) Cold activated brown adipose tissue in healthy men. New Engl J Med 360(15):1500–1508Google Scholar
  86. 86.
    van der Lans A, Hoeks J, Brans B et al (2013) Cold acclimation recruits human brown fat and increases no-shivering thermogenesis. J Clin Investig 123(8):3395–3403CrossRefGoogle Scholar
  87. 87.
    van Marken Lichtenbelt W, Schrauwen P (2011) Implications of nonshivering thermogenesis of energy balance regulation in humans. Am J Physiol Regul 301(2):285–296Google Scholar
  88. 88.
    Johnson F, Mavrogiann A, Ucci M et al (2011) Could increased time spent in a thermal comfort zone contribute to population increases in obesity. Obes Rev 12(7):543–551CrossRefGoogle Scholar
  89. 89.
    Hippel P, Benson R (2014) Obesity and the natural environment across US countries. Am J Publ Health 104(7):1287–1293CrossRefGoogle Scholar
  90. 90.
    Bain A, Jay O (2011) Does summer in a humid continental climate elicit an acclimatization of human thermoregulatory responses? Eur J Appl Physiol 111(6):1197–1205CrossRefGoogle Scholar
  91. 91.
    Yu J, Ouyang Q, Zhu Y et al (2012) A comparison of the thermal adaptability of people accustomed to air conditioned environments and naturally ventilated environments. Indoor Air 22:110–118CrossRefGoogle Scholar
  92. 92.
    Zhang Y (2013) Indoor air quality control: the challenges and responsibilities of HVAC researchers in the new century (in Chinese). HV&AC 42(12):1–7Google Scholar
  93. 93.
    Tan L, Dai Z, Liu Y (2003) Effects on human thermal feeling and neurobehavioral function in air-conditioning environment. Chin J Publ Health Eng 2(4):193–195Google Scholar
  94. 94.
    Cao B, Shang Q, Dai Z et al (2013) The impact of air-conditioning usage on sick building syndrome during summer in China. Indoor Built Environ 22:490–497CrossRefGoogle Scholar
  95. 95.
    Humphreys M (1978) Outdoor temperatures and comfort indoors. Build Res Pract 6(2)Google Scholar
  96. 96.
    Nicol J (1974) An analysis of some observations of thermal comfort in Roorkee, India and Baghdad, Iraq. Ann Hum Biol 1(4):411–426CrossRefGoogle Scholar
  97. 97.
    Auliciems A (1969) Effects of weather on indoor thermal comfort. Int J Biometerorol 13:147–162CrossRefGoogle Scholar
  98. 98.
    Auliciems A (1982) Psychophysical criteria for global thermal zones of building design. Int J Biometeorol 26(8):69–86Google Scholar
  99. 99.
    de Dear R, Brager G, Readon J, Nicol F (1998) Developing an adaptive model of thermal comfort and preference. ASHRAE Trans 104(1):145–167Google Scholar
  100. 100.
    Mclntyre D (1982) Chamber studies—reduction and absurdum? Energy Build 5:89–96CrossRefGoogle Scholar
  101. 101.
    Baker N, Standeven M (1994) Comfort criteria for passively cooled buildings. A PASCOOL task. Renew Energy 5(8):977–984CrossRefGoogle Scholar
  102. 102.
    Oseland N (1994) Comparision of the predicted and reported thermal sensation vote in homes during winter and summer. Energy Build 21(1):45–54CrossRefGoogle Scholar
  103. 103.
    Brager GS, de Dear RJ (1998) Thermal adaptation in the built environment: a literature review. Energy Build 27(1):83–96CrossRefGoogle Scholar
  104. 104.
    Zhang Y, Zhao R (2010) Literature review and discussion on human thermal adaptation in built environment. J HV&AC 40(9):38–48Google Scholar
  105. 105.
    Karjalainen S (2012) Thermal comfort and gender: a literature review. Indoor Air 22(2):96–109CrossRefGoogle Scholar
  106. 106.
    Indraganti M, Rao K (2010) Effect of age, gender, economic group and tenure on thermal comfort: a field study in residential buildings in hot and dry climate with seasonal variations. Energy Build 42(3):273–281CrossRefGoogle Scholar
  107. 107.
    Schiavon S, Lee K (2013) Dynamic predictive clothing insulation models based on outdoor air and indoor operative temperatures. Build Environ 59:250–260CrossRefGoogle Scholar
  108. 108.
    Zhai Y, Elsworth C, Arens E, Zhang H, Zhang Y, Zhao L (2015) Using air movement for comfort during moederate exercise. Build Environ 94(1):344–352CrossRefGoogle Scholar
  109. 109.
    Humphreys MA, Nicol JF (1998) Understanding the adaptive approach to thermal comfort. ASHRAE Trans 104(1):991–1004Google Scholar
  110. 110.
    Kaczmarczyk J, Melikov A, Sliva D (2010) Effect of warm air supplied facially on occupants’ comfort. Build Environ 45:848–855CrossRefGoogle Scholar
  111. 111.
    Zhai Y, Zhang H, Zhang Y, Pasut W, Arens E, Lin Q (2013) Comfort under personally controlled air movement in warm and humid environments. Build Environ 65:109–117CrossRefGoogle Scholar
  112. 112.
    Huang L, Ouyang Q, Zhu Y, Jiang L (2013) A study about the demand for air movement in warm environment. Build Environ 61:27–33CrossRefGoogle Scholar
  113. 113.
    Candido C, de Dear R, Lamberts R, Bittencourt L (2010) Air movement acceptability limits and thermal comfort in Brazil’s hot humid climate zone. Build Environ 45(1):222–229CrossRefGoogle Scholar
  114. 114.
    Zhang H, Arens E, Kim DE, Buchberger E, Bauman F, Huizenga C (2010) Comfort, perceived air quality, and work performance in a low-power task-ambient conditioning system. Build Environ 45:29–39CrossRefGoogle Scholar
  115. 115.
    Zhang H, Arens E, Pasut W (2011) Air temperature thresholds for indoor comfort and perceived air quality. Build Res Inf 39:134–144CrossRefGoogle Scholar
  116. 116.
    Bauman F, Carter T, Baughman A, Arens E (1998) Field study of the impact of a desktop task/ambient conditioning system in office buildings. ASHRAE Trans 104(98):1153–1171Google Scholar
  117. 117.
    Zhang H, Arens E, Zhai Y (2015) A review of the corrective power of personal comfort systems in non-neutral ambient environments. Build Environ 91:15–41CrossRefGoogle Scholar
  118. 118.
    van Marken Lichtenbelt W, Kingma B, van der Lans A, Schellen L (2014) Cold exposure—an approach to increasing energy expenditure in humans. Trends Endocrinol Metab 25(4):165–167Google Scholar
  119. 119.
    Hanssen M, Hoeks J, Brans B, van der Lans A et al (2015) Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med 21(8):863–865CrossRefGoogle Scholar
  120. 120.
    Pallubinsky H, Schellen L, Kingma B, van Marken Lichtenbelt W (2015) Human thermoneutral zone and thermal comfort zone: effects of mild heat acclimation. Extreme Physiol Med 4(1):1Google Scholar
  121. 121.
    Yu J (2012) Studies on the effects of physiological acclimation on thermal responses of people accustomed to different thermal indoor environments. Donghua University, ShanghaiGoogle Scholar
  122. 122.
    Fanger PO, Toftum J (2002) Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy Build 34(6):533–536CrossRefGoogle Scholar
  123. 123.
    Wong NH, Khoo SS (2003) Thermal comfort in classrooms in the tropics. Energy Build 35(4):337–351CrossRefGoogle Scholar
  124. 124.
    Zhang G, Zheng C, Yang W et al (2007) Thermal comfort investigation of naturally ventilated classrooms in a subtropical region. Indoor Built Environ 16(2):148–158CrossRefGoogle Scholar
  125. 125.
    Zhou X, Zhu Y, Qin O et al (2014) Experimental study of the influence of anticipated control on human thermal sensation and thermal comfort. Indoor Air 24(2):171–177CrossRefGoogle Scholar
  126. 126.
    Leaman A, Bordass B (2007) Are users more tolerant of ‘green’ buildings? Build Res Inf 35(6):662–673CrossRefGoogle Scholar
  127. 127.
    Leaman A, Bordass B (2001) Assessing building performance in use 4: the probe occupant surveys and their implications. Build Res Inf 29(2):129–143CrossRefGoogle Scholar
  128. 128.
    Nicol F, Humphreys M (2010) Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251. Build Environ 45(1):11–17CrossRefGoogle Scholar
  129. 129.
    Cartney K, Nicol F (2002) Developing and adaptive control algorithm for Europe. Energy Build 34(6):623–635CrossRefGoogle Scholar
  130. 130.
    Toftum J (2012) Indoor Climate Survey at Espergaerde Gymnasium. Master thesis. Technical University of DenmarkGoogle Scholar
  131. 131.
    Singh M, Mahapatra S, Teller J (2014) Relation between indoor thermal environment and renovation in Liege residential buildings. Therm Sci 18(3):889–902Google Scholar
  132. 132.
    Kim H (2012) Methodology for rating a building’s overall performance based on the ASHRAE/CIBSE/USGBC performance measurement protocols for commercial buildings. Ph.D. thesis. Texas A&M UniversityGoogle Scholar
  133. 133.
    Langevin J, Gurian P, Wen J (2015) Tracking the human-building interaction: a longitudinal field study of occupant behavior in air-conditioned offices. J Environ Psychol 42:94–115CrossRefGoogle Scholar
  134. 134.
    Drake S, de Dear R, Alessi A, Deuble M (2010) Occupant comfort in naturally ventilated and mixed-mode spaces within air-conditioned offices. Archit Sci Rev 53(3):297–306CrossRefGoogle Scholar
  135. 135.
    Vecchi R, Candido C, Lamberts R (2012) Thermal history and its influence on occupants’ thermal acceptability and cooling preferences in warm-humid climates: a new desire for comfort? In: Proceedings of 7th Windsor conference: the changing context of comfort in an unpredictable world. Windsor, UKGoogle Scholar
  136. 136.
    Romero R, Bojorquez G, Corral M, Gallegos R (2013) Energy and the occupant’s thermal perception of low-income dwellings in hot-dry climate: Mexicali, Mexico. Renew Energy 49:267–270CrossRefGoogle Scholar
  137. 137.
    Rijal H, Humphreys M, Nicol F (2015) Adaptive thermal comfort in Japanese houses during the summer season: behavioral Adaptation and the effect of humidity. Buildings 5(3):1037–1054CrossRefGoogle Scholar
  138. 138.
    Indraganti M, Ooka R, Rijal H, Brager G (2014) Adaptive model of thermal comfort for offices in hot and humid climates of China. Build Environ 74:39–53CrossRefGoogle Scholar
  139. 139.
    Andamon M (2006) Thermal comfort and building energy consumption in the Philippine context. In: The 23rd conference on passive and low energy architecture, Geneva, SwitzerlandGoogle Scholar
  140. 140.
    Heidari S, Sharples S (2002) A comparative analysis of short-term and long-term thermal comfort surveys in Iran. Energy Build 34(6):607–614CrossRefGoogle Scholar
  141. 141.
    Oseland N (1998) Acceptable temperature ranges in naturally ventilated and air-conditioned offices. ASHTAE Trans 104:1018Google Scholar
  142. 142.
    Bouden C, Ghrab N (2005) An adaptive thermal comfort model for the Ynisian context: a field study results. Energy Build 37(9):952–963CrossRefGoogle Scholar
  143. 143.
    Yu J, Cao G, Cui W, Ouyang Q, Zhu Y (2013) People who live in a cold climate: thermal adaptation differences based on availability of heating. Indoor Air 23(4):303–310CrossRefGoogle Scholar
  144. 144.
    Yang L, Yan H, Xu Y, Lam J (2013) Residential thermal environment in cold climates at high altitudes and building energy use implications. Energy Build 62:139–145CrossRefGoogle Scholar
  145. 145.
    Yao R, Li B, Liu J (2009) A theoretical adaptive model of thermal comfort—adaptive predicted mean vote (aPMV). Build Environ 44(10):2089–2096CrossRefGoogle Scholar
  146. 146.
    Yao R, Liu J, Li B (2010) Occupants’ adaptive responses and perception of thermal environment in naturally conditioned university classrooms. Appl Energy 87(3):1015–1022CrossRefGoogle Scholar
  147. 147.
    Liu H, Zheng W, Li B et al (2011) Behavioral adaptation of indoor thermal environment in hot-summer and cold-winter zone. J Central South Univ 42(6):1805–1812Google Scholar
  148. 148.
    Wang Z, Li A, He Y et al (2012) Human thermal comfort and thermal adaptability in Harbin. J Harbin Inst Technol 44(8):48–52Google Scholar
  149. 149.
    Ning H, Wang Z, Zhang X, Ji Y (2016) Adaptive thermal comfort in university dormitories in the severe cold area of China. Build Environ 99:161–169CrossRefGoogle Scholar
  150. 150.
    Zhang Y (2011) Review and discussion on thermal adaptation research approaches in built environment. J HV&AC 41(2):9–17Google Scholar
  151. 151.
    Zhang Y, Chen H, Meng Q (2013) Thermal comfort in buildings with split air-conditioners in hot-humid area of China. Build Environ 64:213–224CrossRefGoogle Scholar
  152. 152.
    Zhang Y, Wang J, Chen H, Zhang J, Meng Q (2010) Thermal comfort in naturally ventilated buildings in hot-humid area of China. Build Environ 45(11):2652–2570Google Scholar
  153. 153.
    Zhang Y, Chen H, Wang J, Meng Q (2016) Thermal comfort of people in the hot and humid area of China—impacts of season, climate, and thermal history. Indoor Air 26(5):820–830CrossRefGoogle Scholar
  154. 154.
    Mavrogianni A, Johnson F, Ucci M et al (2013) Historic variations in winter indoor domestic temperatures and potential implications for body weight gain. Indoor and Built Environment. 22(2):360–375CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer Nature Singapore Pte Ltd.  2020

Authors and Affiliations

  1. 1.Tongji UniversityShanghaiChina

Personalised recommendations