Quantum Codes from the Cyclic Codes Over \(\mathbb {F}_{p}[v,w]/\langle v^{2}-1,w^{2}-1,vw-wv\rangle \)

  • Habibul IslamEmail author
  • Om Prakash
  • Ram Krishna Verma
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 307)


In this article, for any odd prime p, we study the cyclic codes over the finite ring \(R=\mathbb {F}_{p}[v,w]/\langle v^{2}-1,w^{2}-1,vw-wv\rangle \) to obtain the quantum codes over \(\mathbb {F}_{p}\). We obtain the necessary and sufficient condition for cyclic codes which contain their duals and as an application, some new quantum codes are presented at the end of the article.


Cyclic code Quantum code Self-orthogonal code Gray map. 

2010 MSC

94B15 94B05 94B60. 



The authors are thankful to the University Grants Commission (UGC) and the Council of Scientific & Industrial Research (CSIR), Govt. of India for financial supports and the Indian Institute of Technology Patna for providing research facilities. Further, the authors would like to thank the anonymous referee(s) for their valuable comments to improve the presentation of the article.


  1. 1.
    M. Ashraf, G. Mohammad, Quantum codes from cyclic codes over \(\mathbb{F}_{q} +u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}\). Quantum Inf. Process. 15(10), 4089–4098 (2016)Google Scholar
  2. 2.
    M. Ashraf, G. Mohammad, Quantum codes over \(\mathbb{F}_{p}\) from cyclic codes over \(\mathbb{F}_{p}[u, v]/\langle u^{2}-1, v^{3}-v, uv-vu\rangle \). Cryptogr. Commun. (2018). Scholar
  3. 3.
    W. Bosma, J. Cannon, Handbook of Magma Functions (University of Sydney, 1995)Google Scholar
  4. 4.
    A.R. Calderbank, E.M. Rains, P.M. Shor, N.J.A. Sloane, Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inform. Theory 44, 1369–1387 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Dertli, Y. Cengellenmis, S. Eren, On quantum codes obtained from cyclic codes over \(A_2\). Int. J. Quantum Inf. 13(3), 1550031 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Gao, Quantum codes from cyclic codes over \({\mathbb{F}}_{q}+v{\mathbb{F}} _{q}+v^{2}{\mathbb{F}} _{q}+v^{3}{\mathbb{F}} _{q}\). Int. J. Quantum Inf. 13(8) (2015), 1550063(1-8)Google Scholar
  7. 7.
    M. Grassl, T. Beth, On optimal quantum codes. Int. J. Quantum Inf. 2, 55–64 (2004)CrossRefGoogle Scholar
  8. 8.
    H. Islam, R.K. Verma, O. Prakash, A family of constacyclic codes over \(\mathbb{F}_{p^m}[v, w]/\langle v^2-1, w^2-1, vw-wv\rangle \). Int. J. Inf. Coding Theory (2018)Google Scholar
  9. 9.
    H. Islam, O. Prakash, Quantum codes from the cyclic codes over \(\mathbb{F}_{p}[u, v, w]/\langle u^2-1, v^2-1, w^2-1, uv-vu, vw-wv, uw-wu\rangle \). J. Appl. Math. Comput. 60(1–2), 625–635 (2019)MathSciNetCrossRefGoogle Scholar
  10. 10.
    X. Kai, S. Zhu, Quaternary construction of quantum codes from cyclic codes over \(\mathbb{F}_{4}+u\mathbb{F}_{4}\). Int. J. Quantum Inf. 9, 689–700 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Li, Z. Xu, X. Li, Binary construction of quantum codes of minimum distance three and four. IEEE Trans. Inf. Theory 50, 1331–1335 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    J. Li, J. Gao, Y. Wang, Quantum codes from \((1-2v)\)- constacyclic codes over the ring \(\mathbb{F}_{q}+u\mathbb{F}_{q}+v\mathbb{F}_{q}+uv\mathbb{F}_{q}\). Discrete Math. Algorithms Appl. 10(4), 1850046 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    F. Ma, J. Gao, F.W. Fu, Constacyclic codes over the ring \(\mathbb{F}_{p} +v\mathbb{F}_{p}+v^{2}\mathbb{F}_{p}\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17, 122 (2018). Scholar
  14. 14.
    M. Ozen, N.T. Ozzaim, H. Ince, Quantum codes from cyclic codes over \({\mathbb{F}} _{3} +u{\mathbb{F}} _{3}+v{\mathbb{F}} _{3}+uv{\mathbb{F}} _{3}\). Int. Conf. Quantum Sci. Appl. J. Phys. Conf. Ser. 766, 012020-1-012020-6 (2016)Google Scholar
  15. 15.
    J. Qian, W. Ma, W. Gou, Quantum codes from cyclic codes over finite ring. Int. J. Quantum Inf. 7, 1277–1283 (2009)CrossRefGoogle Scholar
  16. 16.
    A.K. Singh, S. Pattanayek, P. Kumar, On quantum codes from cyclic codes over \(\mathbb{F}_{2} +u\mathbb{F}_{2}+u^2\mathbb{F}_{2}\). Asian-Eur. J. Math. 11(1), 1850009 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    P.W. Shor, Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52, 2493–2496 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations