Exact Solution for Mixed Integral Equations by Method of Bernoulli Polynomials

  • Mithilesh Singh
  • Nidhi Handa
  • Shivani SinghalEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 307)


In this article, a new method has been developed for solving the mixed second kind Volterra–Fredholm integral equations numerically. A method is introduced in this paper is known as the Bernoulli matrix method. It is applied for solving mixed VFIE’s integral equations. The one property of this method is that it reduces the degree of the problem for solving a structure of algebraic equations. Our proposed method is introduced and it is applied to convert the integral equation into the algebraic equation using of Bernoulli matrix equation. Finally, there are some numerical results that have been given for illustrating the efficiency and exactness of this method.


Bernoulli polynomial method Linear Volterra–Fredholm Integral Equations of second kind 


  1. 1.
    A.K. Borzabadi, A.V. Kamyad, H.H. Mehne, A different approach for solving the nonlinear Fredholm integral equations of the second kind. Appl. Math. Comput. 173, 724–735 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    E. Babolian, F. Fattahzadeh, E. Golpar Raboky, A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type. Appl. Math. Comput. 189, 641–646 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R.P. Agarwal, Boundary value problems for higher order integro-differential equations. Nonlin. Anal. Theory Methods Appl. 9, 259–270 (1983)MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. Youse, M. Razzaghi, Legendre wavelet method for the nonlinear Volterra-Fredholm integral equations. Math. Comput. Simul. 70, 1–8 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A.M. Wazwaz, “Linear and Nonlinear Integral Equations”: Methods and Applications (Springer, Saint Xavier University Chicago, USA, 2011)CrossRefGoogle Scholar
  6. 6.
    K. Maleknejad, M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations. Comput. Math Appl. 37, 18 (1999)MathSciNetCrossRefGoogle Scholar
  7. 7.
    F. Mirzaee , E. Hadadiyan, Numerical Solution of Volterra–Fredholm integral equations via modification of hat functions. Appl. Math. Comput. 280, 110–123 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J.P. Kauthen, Continuous time collocation methods for Volterra-Fredholm integral equations. Numer. Math. 56, 409–424 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    E. Yusufoglu, E. Erbas, Numerical expansion methods for solving Fredholm-Volterra type linear integral equations by interpolation and quadrature rules. Kybernetes 37(6), 768–785 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M.A. Abdou, F.A. Salama, Volterra-Fredholm integral equation of the first kind and spectral relationships. J. Appl. Math. Comput. 153, 141–153 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S.J. Majeed, H.H. Omran, Numerical methods for solving linear Volterra-Fredholm integral equations. J. Al-Nahrain Univ. 11(3), 131–134 (2008)CrossRefGoogle Scholar
  12. 12.
    J.A. Al-A’asam, Deriving the composite Simpson rule by using Bernstein polynomials for solving Volterra integral equations. Baghdad Sci. J. 11(3) (2014)Google Scholar
  13. 13.
    Y. Al-Jarrah, E.B. Lin, Numerical solution of Fredholm-Volterra integral equations by using scaling function interpolation method. Appl. Math. 4, 204–209 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Hącia, Computational methods for Volterra-Fredholm integral equations. Comput. Methods Sci. Technol. 8(2), 13–26 (2002)CrossRefGoogle Scholar
  15. 15.
    F. Mohammadi, A Chebyshev wavelet operational method for solving stochastic Volterra-Fredholm integral equations. Int. J. Appl. Math. Res. 4(2), 217–227 (2015)CrossRefGoogle Scholar
  16. 16.
    M.M. Mustafa, I.N. Ghanim, Numerical solution of linear Volterra-Fredholm integral equations using lagrange polynomials. Math. Theor. Model. 4(5) (2014)Google Scholar
  17. 17.
    M.K. Shahooth, Numerical solution for solving mixed Volterra-Fredholm integral equations of second kind by using. Bernstein Polynomials AIP Adv. 7, 125123 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Bernoulli, Ars conjectandi, Basel, (1713), posthumously published, p. 97Google Scholar
  19. 19.
    L. Euler, Methodus generalis summandi progressiones. Comment. Acad. Sci. Petrop. 6(1738)Google Scholar
  20. 20.
    P.E. Appell, Sur une classe de polynomes. Annales d’ecole normale superieur,s. 2, 9 (1882)Google Scholar
  21. 21.
    E. Lucas, Th´eorie des Nombres, Paris (1891) (Chapter 1)Google Scholar
  22. 22.
    D.H. Lehmer, A new approach to Bernoulli polynomials. Am. Math. Month. 95, 905–911 (1988)MathSciNetCrossRefGoogle Scholar
  23. 23.
    E. Tohidi, A.H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model. 37(6), 4283–4294 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    F. Toutounian, E. Tohidi, A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis. Appl. Math. Comput. 223, 298–310 (2013)MathSciNetzbMATHGoogle Scholar
  25. 25.
    F.A. Costabile, F. Dell’ Accio, Expansions over a rectangle of real functions in Bernoulli polynomials and applications. BIT Numer. Math. 41, 451–464 (2001)Google Scholar
  26. 26.
    P. Natalini, A. Bernaridini, A generalization of the Bernoulli polynomials. J. Appl. Math. 3, 155–163 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    S. Bazam, Bernoulli polynomials for the numerical solution of same classes of linear and non-linear integral equations. J. Comput. Appl. Math. (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Applied ScienceRajkiya Engineering CollegeSonbhadraIndia
  2. 2.Department of Mathematics and StatisticsGurukula Kangri VishwavidyalayaHaridwarIndia

Personalised recommendations