Advertisement

Intelligent Optimization and Control for Reheating Furnaces

  • Min WuEmail author
  • Weihua Cao
  • Xin Chen
  • Jinhua She
Chapter
Part of the Engineering Applications of Computational Methods book series (EACM, volume 3)

Abstract

A reheating furnace is not only a crucial apparatus but also a principal source of power consumption in a tandem hot-rolling steel mill [1]. Regenerative pusher-type reheating furnaces and compact strip production (CSP) soaking furnaces are common reheating furnaces for hot-rolled production lines of billets.

References

  1. 1.
    Chen WH, Chung YC, Liu JL (2005) Analysis on energy consumption and performance of reheating furnaces in a hot strip mill. Int Commun Heat Mass Transf 32(5):695–706CrossRefGoogle Scholar
  2. 2.
    Hu YK, Tan CK, Broughton J, Roach PA, Varga L (2018) Nonlinear dynamic simulation and control of large-scale reheating furnace operations using a zone method based model. Appl Therm Eng 135:41–53CrossRefGoogle Scholar
  3. 3.
    Steinboeck A, Graichen K, Kugi A (2011) Dynamic optimization of a slab reheating furnace with consistent approximation of control variables. IEEE Trans Control Syst Technol 19(6):1444–1456CrossRefGoogle Scholar
  4. 4.
    Steinboeck A, Wild D, Kugi A (2013) Nonlinear model predictive control of a continuous slab reheating furnace. Control Eng Pract 21(4):495–508CrossRefGoogle Scholar
  5. 5.
    Suzuki M, Katsuki K, Imura J, Nakagawa J, Kurokawa T, Aihara K (2014) Simultaneous optimization of slab permutation scheduling and heat controlling for a reheating furnace. J Process Control 24(1):225–238CrossRefGoogle Scholar
  6. 6.
    Mayr B, Prieler R, Demuth M, Moderer L, Hochenauer C (2017) CFD analysis of a pusher type reheating furnace and the billet heating characteristic. Appl Therm Eng 115:986–994CrossRefGoogle Scholar
  7. 7.
    Prieler R, Mayr B, Demuth M, Holleis B, Hochenauer C (2016) Prediction of the heating characteristic of billets in a walking hearth type reheating furnace using CFD. Int J Heat Mass Transf 92:675–688CrossRefGoogle Scholar
  8. 8.
    Wang ZJ, Shao C, Chai TY (1999) Application of multivariable technique in temperature control of reheating furnaces. In: Proceedings of IEEE international conference on control applications, pp 29–32Google Scholar
  9. 9.
    Wang J, Liu YW, Sundén B, Yang R, Baleta J, Vujanović M (2017) Analysis of slab heating characteristics in a reheating furnace. Energy Convers Manag 149:928–936CrossRefGoogle Scholar
  10. 10.
    Kim YI, Moon KC, Kang BS, Han C, Chang KS (1998) Application of neural network to the supervisory control of a reheating furnace in the steel industry. Control Eng Pract 6(8):1009–1014CrossRefGoogle Scholar
  11. 11.
    Sibarani H, Samyudia Y (2004) Robust nonlinear slab temperature control design for an industrial reheating furnace. Comput Aided Chem Eng 18:811–816CrossRefGoogle Scholar
  12. 12.
    Liu YT, Lin YY, Wu SL, Chuang CH, Lin CT (2016) Brain dynamics in predicting driving fatigue using a recurrent self-evolving fuzzy neural network. IEEE Trans Neural Netw Learn Syst 27(2):347–360CrossRefGoogle Scholar
  13. 13.
    Li S, Li YM (2014) Nonlinearly activated neural network for solving time-varying complex sylvester equation. IEEE Trans Cybern 44(8):1397–1407CrossRefGoogle Scholar
  14. 14.
    Qin S, Xue XP (2015) A two-layer recurrent neural network for nonsmooth convex optimization problems. IEEE Trans Neural Netw Learn Syst 26(6):1149–1160MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhang D, Li H (2008) A stochastic-based FPGA controller for an induction motor drive with integrated neural network algorithms. IEEE Trans Ind Electron 55(2):551–561CrossRefGoogle Scholar
  16. 16.
    Cabrera JA, Castillo JJ, Carabias E, Ortiz A (2016) Evolutionary optimization of a motorcycle traction control system based on fuzzy logic. IEEE Trans Fuzzy Syst 23(5):1594–1607CrossRefGoogle Scholar
  17. 17.
    Chatterjee A, Chatterjee R, Matsuno F, Endo T (2008) Augmented stable fuzzy control for flexible robotic arm using LMI approach and neuro-fuzzy state space modeling. IEEE Trans Ind Electron 55(3):1256–1270CrossRefGoogle Scholar
  18. 18.
    Li SH, Fairbank M, Johnson C, Wunsch DC, Alonso E, Proano JL (2014) Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions. IEEE Trans Neural Netw Learn Syst 25(4):738–750CrossRefGoogle Scholar
  19. 19.
    Haddoun A, Benbouzid MEH, Diallo D, Abdessemed R, Ghouili J, Srairi K (2008) Modeling, analysis, and neural network control of an EV electrical differential. IEEE Trans Ind Electron 55(6):2286–2294CrossRefGoogle Scholar
  20. 20.
    San PP, Ling SH, Nuryani N, Nguyen HT (2014) Evolvable rough-block-based neural network and its biomedical application to hypoglycemia detection system. IEEE Trans Cybern 44(8):1338–1349CrossRefGoogle Scholar
  21. 21.
    Ijjina EP, Chalavadi KM (2016) Human action recognition using genetic algorithms and convolutional neural networks. Pattern Recognit 59:199–212CrossRefGoogle Scholar
  22. 22.
    Lin FJ, Shen PH, Yang SL, Chou PH (2006) Recurrent radial basis function network-based fuzzy neural network control for permanent-magnet linear synchronous motor servo drive. IEEE Trans Magn 42(11):3694–3705CrossRefGoogle Scholar
  23. 23.
    Toliyat HA, Wlas M, Krzemiriski Z (2008) Neural-network-based parameter estimations of induction motors. IEEE Trans Ind Electron 55(4):1783–1794CrossRefGoogle Scholar
  24. 24.
    Lin FJ, Shen PH (2006) Adaptive fuzzy-neural-network control for a DSP-based permanent magnet linear synchronous motor servo drive. IEEE Trans Fuzzy Syst 14(4):481–495CrossRefGoogle Scholar
  25. 25.
    Wang TC, He X, Huang TW (2016) Complex dynamical behavior of neural networks in circuit implementation. Neurocomputing 190:95–106CrossRefGoogle Scholar
  26. 26.
    Das AK, Subramanian K, Sundaram S (2015) An evolving interval type-2 neurofuzzy inference system and its metacognitive sequential learning algorithm. IEEE Trans Fuzzy Syst 23(6):2080–2093CrossRefGoogle Scholar
  27. 27.
    Dora S, Suresh S, Sundararajan N (2015) A sequential learning algorithm for a spiking neural classifier. Appl Soft Comput 36:255–268CrossRefGoogle Scholar
  28. 28.
    Li S (2001) Comparative analysis of backpropagation and extended Kalman filter in pattern and batch forms for training neural networks. Proc IEEE Int Jt Conf Neural Netw 1(1):144–149MathSciNetGoogle Scholar
  29. 29.
    Liao YX, Wu M, She JH (2006) Modeling of reheating-furnace dynamics using neural network based on improved sequential-learning algorithm. In: Proceedings of IEEE international conference on control applications, pp 3175–3181Google Scholar
  30. 30.
    Shen YL, Ju W, Yu C, Li SY (2010) Normalized decoupling control for high-dimensional MIMO processes forapplication in room temperature control HVAC systems. Control Eng Pract 2:652–664CrossRefGoogle Scholar
  31. 31.
    Kennedy J, Eberhart RC (2002) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp. 1942–1948Google Scholar
  32. 32.
    Azimifar A, Payan S (2016) Enhancement of heat transfer of confined enclosures with free convection using blocks with PSO algorithm. Appl Therm Eng 10:79–91CrossRefGoogle Scholar
  33. 33.
    Chen SM, Chiou CH (2015) Multiattribute decision making based on interval-valued intuitionistic fuzzy sets, PSO techniques, and evidential reasoning methodology. IEEE Trans Fuzzy Syst 23(6):1905–1916CrossRefGoogle Scholar
  34. 34.
    Rubaai A, Young P (2016) Hardware/Software implementation of fuzzy-neural-network self-learning control methods for brushless dc motor drives. IEEE Trans Ind Appl 52(1):414–424CrossRefGoogle Scholar
  35. 35.
    Chatterjee A, Pulasinghe K, Watanabe K, Izumi K (2005) A particle-swarm-optimized fuzzy-neural network for voice-controlled robot systems. IEEE Trans Ind Electron 52(6):1478–1489CrossRefGoogle Scholar
  36. 36.
    Ho SL, Yang SY, Ni GZ, Wong HC (2006) A particle swarm optimizaion method with enhanced global search ability for design optimizations of electromagnetic devices. IEEE Trans Magn 42(4):1107–1110CrossRefGoogle Scholar
  37. 37.
    Lin CJ, Hong SJ (2007) The design of neuro-fuzzy networks using particle swarm optimization and recursive singular value decomposition. Neurocomputing 71(1–3):297–310CrossRefGoogle Scholar
  38. 38.
    Javidrad F, Nazari M (2017) A new hybrid particle swarm and simulated annealing stochastic optimization method. Appl Soft Comput 60:634–654CrossRefGoogle Scholar
  39. 39.
    Tan KC, Goh CK, Mamun AA, Ei EZ (2008) An evolutionary artificial immune system for multi-objective optimization. Eur J Oper Res 187(2):371–392MathSciNetCrossRefGoogle Scholar
  40. 40.
    Wang ZJ, Chai TY, Guan SP, Shao C (1999) Hybrid optimization setpoint strategy for slab reheating furnace temperature. In: Proceedings of american control conference, pp 4082–4086Google Scholar
  41. 41.
    Zhang RD, Tao JL (2018) A nonlinear fuzzy neural network modeling approach using an improved genetic algorithm. IEEE Trans Ind Electron 65(7):5882–5892CrossRefGoogle Scholar

Copyright information

© Science Press 2020

Authors and Affiliations

  1. 1.China University of GeosciencesWuhanChina
  2. 2.Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex SystemsWuhanChina
  3. 3.School of EngineeringTokyo University of TechnologyTokyoJapan

Personalised recommendations