A Review on Advanced Optimization Algorithms in Multidisciplinary Applications

  • M. SreedharEmail author
  • S. Akshay Navaneeth Reddy
  • S. Abhay Chakra
  • T. Sandeep Kumar
  • S. Sreenatha Reddy
  • B. Vijaya Kumar
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


In various fields of engineering, optimization plays a key role in the development of new technology. In this wake, this paper discusses in detail, the concept of optimization, a few advanced methods and approaches most commonly used in different applications optimization process. The two most popular optimization procedures are also contrasted and discussed.


Optimization Genetic algorithm Particle swarm optimization Heuristic Algorithms 


  1. 1.
  2. 2.
    Karp RM (1977) Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane. Math Oper Res 2:209–224MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bitran GR, Tirupati D (1993) Hierarchical production planning. In: Graves SC, Rinnooy Kay AHG., Zipkin PH (eds) Logistics of production and inventory, vol 4. North Holland: Amsterdam, Chapter 10Google Scholar
  4. 4.
    Morton TE, Pentico DW (1993) Heuristic scheduling systems. Wiley—Interscience, New YorkGoogle Scholar
  5. 5.
    Bilde O, Vidal RVV (1973) On the connections between locations and scheduling problems. In: Johnson M and Ashour S (eds) SCI Proceedings for simulation in manufacturing industries, 3(2):30–42Google Scholar
  6. 6.
    Ehrhardt R (1979) The power approximation for computing (s, S) inventory policies. Manage Sci 25:777–786CrossRefGoogle Scholar
  7. 7.
    Geoffrion AM (1977) A priori error bounds for procurement commodity aggregation in logistics planning models. Nav Res Logist Q 24:201–212MathSciNetCrossRefGoogle Scholar
  8. 8.
    Silver EA, Meal HC (1973) A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment. Prod Inven Manag J 14:64–74Google Scholar
  9. 9.
    Fisher ML, Jaikumar R (1981) A generalized assignment heuristic for vehicle routing. Networks 11:109–124MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hegazy O, Soliman OS, Salam MA (2015) Comparative study between FPA, BA, MCS, ABC, and PSO algorithms in training and optimizing of LS-SVM for stock market prediction. Int J Adv Comput Res 5(18):35–45Google Scholar
  11. 11.
    Jourdan L, Basseur M, Talbi EG (2009) Hybridizing exact methods and metaheuristics: a taxonomy. Eur J Oper Res 199(3):620–629 (December, Elsevier)MathSciNetCrossRefGoogle Scholar
  12. 12.
    SatyaPrasad R, NagaRaju O, Kantam RRL (2010) SRGM with imperfect debugging by genetic algorithms. Int J Softw Eng Appl (IJSEA) 1(2):66–79 (April)CrossRefGoogle Scholar
  13. 13.
    Rashidifar MA, Abertavi A (2014) A novel technique for controller tuning. Int J Appl Control, Electr Electron Eng (IJACEEE) 2(2):1–12 (May)Google Scholar
  14. 14.
    Pandey AK, Tiwari K, Dubey AK (2014) Optimization of the process parameters in micro-electric discharge machining using response surface methodology and genetic algorithm. Int J Sci Res Publ 4(9):1–05 (September)Google Scholar
  15. 15.
    Ali BB, Jarray F (2013) Genetic approach for Arabic part of speech tagging. Int J Nat Lang Comput (IJNLC) 2(3):1–12 (June)CrossRefGoogle Scholar
  16. 16.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948CrossRefGoogle Scholar
  17. 17.
    Hassan R, Cohanim B, De Weck O (2005) A comparison of particle swarm optimization and the genetic algorithm. In: Conference: proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & material conferenceGoogle Scholar
  18. 18.
    Ali Ghorbani M, Kazempour R, Chau KW, Shamshirband S, Taherei Ghazvinei P (2018) Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: a case study in Talesh, Northern Iran. Eng Appl Comput Fluid Mech 12(1):724–737Google Scholar
  19. 19.
    Sivapriya TR (2011) An efficient wavelet based feature reduction and classification technique for the diagnosis of Dementia. Int J Comput Sci, Eng Inf Technol (IJCSEIT) 1(5):63–76 (December)CrossRefGoogle Scholar
  20. 20.
    Binh HTT (2013) Hybrid particle swarm optimization for solving multi-area economic dispatch problem. Int J Soft Comput (IJSC) 4(2), 17—27 (May)Google Scholar
  21. 21.
    Hossain D, Capi G (2017) Genetic algorithm based deep learning parameters tuning for robot object recognition and grasping (March)Google Scholar
  22. 22.
    Rokbani N, Alimi AM (2013) Inverse kinematics using particle swarm optimization, a statistical analysis. Procedia Eng 64:1602–1611. Scholar
  23. 23.
    Zhang Z (2012) Vision-based grasp planning of 3d objects using Genitic Algorithms, Proceedings IEEE international conference on automation and logistics, pp 646–651Google Scholar
  24. 24.
    Erkmen AM, Durna M (1998) Genetic algorithm-based optimal regrasping with the Anthrobot 5-fingered robot hand, MayGoogle Scholar
  25. 25.
    Erdogmus P, Toz M (2012) Heuristic optimization algorithms in robotics, serial and parallel robot manipulators. In: Kucuk MTE-S (ed) Rijeka: IntechOpen. pp 311–338 (Chapter 16)Google Scholar
  26. 26.
    Fernandez JJ, Walker ID (1998) Biologically inspired robot grasping using genetic programming. In: Proceedings. 1998 IEEE international conference on robotics and automation (Cat. No.98CH36146), 4 (May), pp 3032–3039.
  27. 27.
    Bjoerlykhaug E (2018) A closed loop inverse kinematics solver intended for offline calculation optimized with GA. Robotics 7(1):7. Scholar
  28. 28.
    Mohamed Z, Capi G (2015) Multi objective optimization of humanoid robot arm motion for obstacle avoidance. In: 2015 IEEE international symposium on robotics and intelligent sensors (IRIS), Langkawi, pp 111–114.
  29. 29.
    Parker JK, Khoogar AR, Goldberg DE (1989) Inverse kinematics of redundant robots using genetic algorithms. In: Proceedings, 1989 international conference on robotics and automation, pp 271–276Google Scholar
  30. 30.
    Collins TJ, Shen WM (2017) Particle swarm optimization for high-DOF inverse kinematics. In: 2017 3rd international conference on control, automation and robotics (ICCAR), pp 1–6. Polymorphic Robotics Laboratory, Department of Computer Science, University of Southern California, USAGoogle Scholar
  31. 31.
    Rokbani N, Alimi AM (2013) Inverse kinematics using particle swarm optimization, a statistical analysis. Procedia Eng 64:1602–1611 (Elsevier)CrossRefGoogle Scholar
  32. 32.
    Starke S, Hendrich N, Magg S, Zhang J (2016) An efficient hybridization of genetic algorithms and particle swarm optimization for inverse kinematics. In: IEEE international conference on robotics and biomimetics (ROBIO), pp 1782–1789. Department of Informatics, University of Hamburg, GermanyGoogle Scholar
  33. 33.
    Ayyıldız M, Çetinkaya, K (2016) Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • M. Sreedhar
    • 1
    Email author
  • S. Akshay Navaneeth Reddy
    • 2
  • S. Abhay Chakra
    • 2
  • T. Sandeep Kumar
    • 2
  • S. Sreenatha Reddy
    • 2
  • B. Vijaya Kumar
    • 2
  1. 1.Research Scholar, Department of Mechanical EngineeringK L UniversityGuntur DistrictIndia
  2. 2.Department of Mechanical EngineeringGuru Nanak Institute of TechnologyHyderabadIndia

Personalised recommendations