Storing “OPTIK” Data in Cloud: Photonics for Embedded Application

  • K. P. SwainEmail author
  • S. K. Nayak
  • G. Palai
  • Partha Sarkar
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 37)


Present communication dilates the upshot of foregoing published research in OPTIK: International Journal of Light and Electron Optics, which was dealt with optical MUX/DEMUX and is manifested in cloud, which envisages as embedded system or cloud computing application. A model based on machine learning algorithm is also proposed to predict the approximate values of odd and even layers for background material used in photonic crystal structure.


MUX/DEMUX OPTIK data Photonics Machine learning 


  1. 1.
    K.P. Swain, G. Palai, J.K. Moharana, Analysis for ‘101’ channels of MUX/DEMUX using grating SOI structure sub nanometer scale. Optik Int. J. Light Electron. Opt. 127, 78–82 (2017)CrossRefGoogle Scholar
  2. 2.
    G. Palai, S.K. Trpathy, A novel method for measurement of concentration using two dimensional photonic crystal structures. Opt. Commun. 285, 2765–2768 (2012)CrossRefGoogle Scholar
  3. 3.
    G. Palai, S.K. Trpathy, T. Sahu, A novel technique to measure the sucrose concentration in hydrogel sucrose solution using two dimensional photonic crystal structures, Optik—Int. J. Light Electron Opt. 125(1), 349–352 (2014)CrossRefGoogle Scholar
  4. 4.
    G. Palai, S.K. Trpathy, Measurement of glycerol concentration in B–H–G solution using 3D photonic crystal structure, Optik—Int. J. Light Electron Opt. 125(12), 2875–2879 (2014)CrossRefGoogle Scholar
  5. 5.
    G. Palai, Measurement of Impurity concentration in chalcogenide glasses using optical principle. OPTIK Int. J. Light Electron Opt. 125(19), 5794–5799 (2014)CrossRefGoogle Scholar
  6. 6.
    G. Palai, T.K. Dhir, Theoretical model to measure the concentration of hemoglobin in human blood using 3D photonic crystal structure. Optik—Int. J. Light Electron Opt. 126(4), 478–482 (2015)CrossRefGoogle Scholar
  7. 7.
    G. Palai, P.K. Dalai, A. Kumar, A. Satpathy, J.K. Kushwaha, A. Jha, A. Panda, Optimization of microstructure optical fiber using PWE method for investigation of glucose in intralipid. J. Laser Opt. Photon. 2(1), 1–4 (2015)Google Scholar
  8. 8.
    C.S. Mishra, G. Palai, Simulation studies for reflected light of polymer waveguide for realization of temperature. Optik—Int. J. Light Electron Opt. 126(23), 3656–3658CrossRefGoogle Scholar
  9. 9.
    C.S. Mishra, G. Palai, Temperature and Pressure effect on GaN waveguide at 428.71 Terahertz frequency for Sensing application. Optik—Int. J. Light Electron Opt. 126(23), 4685–4687 (2015)CrossRefGoogle Scholar
  10. 10.
    C. Nayak, G. Palai, P. Sarkar, Investigation of mole fraction in nitride semiconductor using photonic bandgap analysis. Optik—Int. J. Light Electron Opt. 127(2), 697–699 (2016)CrossRefGoogle Scholar
  11. 11.
    C.S. Mishra, G. Palai, Manipulating light with porous silicon for investigation of porosity using finite difference time domain method. Optik—Int. J. Light Electron Opt. 127, 1195–1197 (2016)CrossRefGoogle Scholar
  12. 12.
    G. Palai, N. Muduli, S.K. Sahoo, S.K. Tripathy, S.K. Patnaik, Realization of potassium chloride sensor using photonic crystal fiber. Soft Nanosc. Lett. 3, 16–19CrossRefGoogle Scholar
  13. 13.
    G. Palai, D. Jena, A. Hota, Estimation of damage ratio of IINDYV nanowaveguide using modified equation. Optik—Int. J. Light and Electron Opt. 127(11), 4610–4614 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Panda, P. Sarkar, G. Palai, Studies on temperature variation in semiconductor waveguide through ARDP loss for nanophotonic applications. Optik—Int. J. Light Electron Opt. 127(13), 5439–5442 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Panda, C.S. Mishra, G. Palai, PWE approach to optical thyristor for investigation of doping concentration. Optik—Int. J. Light Electron Opt. 127(11), 4831–4833 (2016)CrossRefGoogle Scholar
  16. 16.
    C. Nayak, G. Palai, Realization of monochromatic filter using silicon grating structure: an application of silicon photonics. Optik—Int. J. Light Electron Opt. 127, 8264–8268 (2016)CrossRefGoogle Scholar
  17. 17.
    G. Palai, Computation of impurity concentration in silicon photodiode based on their optical properties. Optik—Int. J. Light Electron Opt. 133, 108–113 (2017)CrossRefGoogle Scholar
  18. 18.
    C.S. Mishra, G. Palai, Optical nonlinearity in germanium and silicon semiconductor vis-a-vis temperature and wavelengths for sensing applicatioa Optik-Int. J. Light Electron Opt. 137, 37–34Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • K. P. Swain
    • 1
    Email author
  • S. K. Nayak
    • 1
  • G. Palai
    • 1
  • Partha Sarkar
    • 2
  1. 1.Department of Electronics and Communication EngineeringGITABhubaneswarIndia
  2. 2.B.P.U.TRourkelaIndia

Personalised recommendations