Advertisement

Ecology and Evolution of Polyembryony

  • Kikuo Iwabuchi
Chapter
  • 16 Downloads
Part of the Entomology Monographs book series (ENTMON)

Abstract

Sexual reproduction is the most common mode of reproduction in many multicellular organisms, including insects. The evolutionary success of sexual reproduction has been attributed to the generation of variation among offspring, which is important for the survival and future reproduction of the population. Consequently, populations that reproduce sexually can leave more offspring than those that reproduce asexually. This variation is created by the development of heritable mutations in the germ-cell lines in sexually reproducing organisms. These mutations are continuously reshuffled by the mixing and recombination of genes from two parents and are transferred to the next generation. More importantly, sexual reproduction will also eliminate accumulated, often harmful, alterations in the DNA that occur during meiosis and recombination—that is, individuals with harmful genes are unable to pass their genes to the next generation as a result of natural selection. On the other hand, the harmless portion of genes that are created during the process of meiosis from the harmful mutated genes may increase the chance of survival. By contrast, asexual reproduction results in the transfer of the full maternal genotype, which must be optimal in the present environment, and so asexually reproducing individual can successfully colonize new habitats and develop immediately (Williams 1975).

Keywords

Sex ratio Sex allocation Host quality Brood size Evolution of development Heterochrony 

References

  1. Alford DV (1976) Observations on Litomastix aretas, an encyrtid parasite of the strawberry tortrix moth. Ann Appl Biol 84:1–5CrossRefGoogle Scholar
  2. Alié A, Leclere L, Jager M, Dayraud C, Chang P, Guyader HL, Queinnec E, M M (2011) Somatic stem cells express piwi and vasa genes in an adult ctenophore: ancient association of “germline genes” with stemness. Dev Biol 350:183–197PubMedCrossRefGoogle Scholar
  3. Aoki S (1977) Colophina clematis (Homoptera, Pemphigidae), an aphid species with ‘soldiers’. Kontyu 45:276–282Google Scholar
  4. Avise JC (2015) Evolutionary perspectives on clonal reproduction in vertebrate animals. Proc Natl Acad Sci U S A 112:8867–8873PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baehrecke EH, Strand MR (1990) Embryonic morphology and growth of the polyembryonic parasitoid Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae). Int J Insect Morphol Embryol 19:165–175CrossRefGoogle Scholar
  6. Baehrecke EH, Aiken JM, Dover BA, Strand MR (1993) Ecdysteroid induction of embryonic morphogenesis in a parasitic wasp. Dev Biol 158:275–287PubMedCrossRefGoogle Scholar
  7. Birney EC, Baird DD (1985) Why do some mammals polyovulate to produce a litter of two? Am Nat 126:136–140CrossRefGoogle Scholar
  8. Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115PubMedGoogle Scholar
  9. Bowker CL, Ross KG, Strand MR (2014) The metabolic enzyme phosphoglucose isomerase (Pgi) affects the outcome of intra-specific competition in a polyembryonic wasp. Ecol Entomol 39:648–655CrossRefGoogle Scholar
  10. Bugler M, Rempoulakis P, Shacham R, Keasar T, Thuijsman F (2013) Sex allocation in a polyembryonic parasitoid with female soldiers: an evolutionary simulation and an experimental test. PLoS One 8:e64780PubMedPubMedCentralCrossRefGoogle Scholar
  11. Byers JR, Yu DS, Jones JW (1993) Parasitism of the army cutworm, Euxoa auxiliaris (Grt) (Lepidoptera, Noctuidae), by Copidosoma bakeri (Howard) (Hymenoptera, Encyrtidae) and effect on crop damage. Can Entomol 125:329–335CrossRefGoogle Scholar
  12. Charnov EL, Krebs JR (1974) On clutch-size and fitness. Ibis 116:217–219CrossRefGoogle Scholar
  13. Choe JC, Crespi BJ (1997) The evolution of social behavior in insects and arachnids. Cambridge University Press, LondonCrossRefGoogle Scholar
  14. Clausen CP (1972) Entomophagous insects. Hafner Publishing Company, New York. 688pGoogle Scholar
  15. Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71:421–435CrossRefGoogle Scholar
  16. Craig SF, Slobodkin LB, Wray G (1995) The ‘paradox’ of polyembryony. Trends Ecol Evol 10(9):371–372PubMedCrossRefGoogle Scholar
  17. Craig SF, Slobodkin LB, Wray GA, Biermann CH (1997) The ‘paradox’ of polyembryony: a review of the cases and a hypothesis for its evolution. Evol Ecol 11:127–143CrossRefGoogle Scholar
  18. Crespi BJ (1992) Eusociality in Australian gall thrips. Nature 359:724–726CrossRefGoogle Scholar
  19. Crowley PH, Saeki Y (2009) Balancing the size-number tradeoff in clonal broods. Open Ecol J 2:100–111CrossRefGoogle Scholar
  20. Crowley PH, Saeki Y, Switzer PV (2009) Evolutionarily stable oviposition and sex ratio in parasitoid easps with single-sex broods. Ecol Entomol 34:163–175CrossRefGoogle Scholar
  21. Cruz YP (1981) A sterile defender morph in a polyembryonic hymenopterous parasite. Nature 294:446–477CrossRefGoogle Scholar
  22. Daniel DM (1932) Macrocentrus ancylivorus Rohwer, a polyembryonic braconid parasite of the oriental fruit moth. New York State Agric Exp Station Tech Bull 187:5–101Google Scholar
  23. Donnel DM (2014) Analysis of odorant-binding protein gene family members in the polyembryonic wasp, Copidosoma floridanum: evidence for caste bias and host interaction. J Insect Physiol 60:127–135CrossRefGoogle Scholar
  24. Donnell DM, Strand MR (2006) Caste-based differences in gene expression in the polyembryonic wasp Copidosoma floridanum. Insect Biochem Mol Biol 36:141–153PubMedCrossRefGoogle Scholar
  25. Doutt RL (1947) Polyembryony in Copidosoma koehleri Blanchard. Am Nat 81:435–453CrossRefGoogle Scholar
  26. Dunn J, Dunn DW, Strand MR, Hardy IC (2017) Higher aggression towards closer relatives by soldier larvae in a polyembryonic wasp. Biol Lett 10:20140229CrossRefGoogle Scholar
  27. Enders AC (2002) Implantation in the nine-banded armadillo: how does a single blastocyst form four embryos? Placenta 23:71–85PubMedCrossRefGoogle Scholar
  28. Fisher RA (1930) The genetical theory of natural selection. The Clarendon Press, OxfordCrossRefGoogle Scholar
  29. Fletcher DJC, Ross KG (1985) Regulation of reproduction in eusocial Hymenoptera. Annu Rev Entomol 30:19–43CrossRefGoogle Scholar
  30. Gadagkar R, Vinutha C, Shanubhogue A, Gore AP (1988) Pre-imaginal biasing of caste in a primitively eusocial insect. Proc R Soc B 233:175–189Google Scholar
  31. Galbreath GJ (1985) The evolution of monozygotic polyembryony in Dasypus. In: Montgomery GG (ed) The evolution and ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institute Press, Washington, DC, pp 243–246Google Scholar
  32. Gardner A, West SA (2004a) Spite and the scale of competition. J Evol Biol 17:1195–1203PubMedCrossRefGoogle Scholar
  33. Gardner A, West SA (2004b) Spite among siblings. Science 305:1413–1414PubMedCrossRefGoogle Scholar
  34. Gardner A, Hardy IC, Taylor PD, West SA (2007) Spiteful soldiers and sex ratio conflict in polyembryonic parasitoid wasps. Am Nat 169:519–533PubMedCrossRefGoogle Scholar
  35. Giron D, Harvey JA, Johnson JA, Strand MR (2007) Male soldier caste larvae are non-aggressive in the polyembryonic wasp. Biol Lett 3(4):431–434PubMedPubMedCentralCrossRefGoogle Scholar
  36. Glastad KM, Chau LM, MAD G (2015) Epigenetics in social insects. Adv Insect Physiol 48:227–269CrossRefGoogle Scholar
  37. Gleeson SK, Clark AB, Dugatkin LA (1994) Monozygotic twinning: an evolutionary hypothesis. Proc Natl Acad Sci U S A 91:11363–11367PubMedPubMedCentralCrossRefGoogle Scholar
  38. Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, PrincetonCrossRefGoogle Scholar
  39. Gordon SD, Strand MR (2009) The polyembryonic wasp Copidosoma floridanum produces two castes by differentially parceling the germ line to daughter embryos during embryo proliferation. Dev Genes Evol 219:445–454PubMedCrossRefGoogle Scholar
  40. Grbic C (2003) Polyembryony in parasitic wasps: evolution of a novel mode of development. Int J Dev Biol 47:633–642PubMedGoogle Scholar
  41. Grbic M, Ode PJ, Strand MR (1992) Sibling rivalry and brood sex ratios in polyembryonic wasps. Nature 360:254–256CrossRefGoogle Scholar
  42. Grbic M, Nagy LM, Carroll SB, Strand M (1996) Polyembryonic development: insect pattern formation in cellularized environment. Development 122:795–804PubMedGoogle Scholar
  43. Grbic M, Rivers D, Strand M (1997) Caste formation in the polyembryonic wasp Copidosoma floridanum (Hymenoptera: Encyrtidae): in vivo and in vitro analysis. J Insect Physiol 43:553–565PubMedCrossRefGoogle Scholar
  44. Grbic M, Nagy LM, Strand MR (1998) Development of polyembryonic insects: a major departure from typical insect embryogenesis. Dev Genes Evol 208:69–81PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hamilton WD (1963) The evolution of altruistic behavior. Am Nat 97:354–356CrossRefGoogle Scholar
  46. Hamilton WD (1964) The genetical evolution of social behavior I. J Theor Biol 7:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488PubMedCrossRefGoogle Scholar
  48. Hamilton WD (1970) Selfish and spiteful behavior in an evolutionary model. Nature 228:1218–1220PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hardy ICW, Ode P, Strand MR (1993) Factors influencing brood sex ratios in polyembryonic Hymenoptera. Oecologia 93:343–348PubMedCrossRefGoogle Scholar
  50. Hayashi Y, Lo N, Miyata H, Kitade O (2007) Sex-linked genetic influence on caste determination in a termite. Science 318:985–987PubMedCrossRefGoogle Scholar
  51. Heiderer M, Westenberg C, Li D, Zhang H, Preiniger D, Dungl E (2018) Giant panda twin rearing without assistance requires more interactions and less rest of the mother—a case study at Vienna zoo. PLoS One 13:e0207433PubMedPubMedCentralCrossRefGoogle Scholar
  52. Heimpel GE, Rosenheim JA, Mangel M (1997) Predation on adult Aphytis parasitoids in the field. Oecologia 110:346–352PubMedCrossRefGoogle Scholar
  53. Herre EA (1985) Sex ratio adjustment in fig wasps. Science 228:896–898PubMedCrossRefPubMedCentralGoogle Scholar
  54. Herre EA (1993) Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259:1442–1445PubMedCrossRefPubMedCentralGoogle Scholar
  55. Hoffmeister TS, Thiel A, Kock B, Babendreier D, Kuhlmann U (2000) Pre-patch experience affects the egg distribution pattern in a polyembryonic parasitoid of moth egg batches. Ethology 106:145–157CrossRefGoogle Scholar
  56. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398CrossRefGoogle Scholar
  57. Huxley JS, De Beer GR (1934) Experimental Embryony. Cambridge University Press, LondonGoogle Scholar
  58. Inoue H, Yoshimura J, Iwabuchi K, Barillas-Mury C (2014) Gene expression of protein-coding and non-coding RNAs related to Polyembryogenesis in the parasitic wasp, Copidosoma floridanum. PLoS One 9:e114372PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ivanova-Kasas OM (1961) Essays on the comparative embryology of Hymenoptera. Leningrad University Press, Leningrad. 266 ppGoogle Scholar
  60. Ivanova-Kasas OM (1972) Polyembryony in insects. In: Counce SJ, Waddington CH (eds) Developmental systems, vol 1. Academic Press, New York, pp 243–271Google Scholar
  61. Junnikkala E (1960) Life history and insect enemies of Hyponomeuta malinellus Zell. (Lep., Hyponomeutidae) in Finland. Ann Zool Soc Zool Bot Fenn Vanamo 21:3–44Google Scholar
  62. Keasar T, Segoli M, Steinberg R, Giron D, Strand MR, Bouskila A, Harari A (2006) Costs and consequences of superparasitism in the polyembryonic parasitoid Copidosoma koehleri (Hymenoptera: Encyrtidae). Ecol Entomol 31:277–283CrossRefGoogle Scholar
  63. Kent DS, Simpson JA (1992) Eusociality in the beetle Austroplatypus incompertus (Coleoptera: Curculionidae). Naturwissenschaften 79:86–87CrossRefGoogle Scholar
  64. King BH (1994) How do female parasitoid wasps assess host size during sex-ratio manipulation. Anim Behav 48:511–518CrossRefGoogle Scholar
  65. Kronforst MR, Gilley DC, Strassmann JE, Queller DC (2008) DNA methylation is widespread across social Hymenoptera. Curr Biol 18:R287–R288PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kuhlmann U, Babendreier D, Hoffmeister TS, Mills NJ (1998) Impact and oviposition behavior of Ageniapsis fuscicollis (Hymenoptera: Encyrtidae), a polyembryonic parasitoid of the apple ermine moth., Yponomeuta malinellus (Lepidoptera: Yponomeutidae). Bull Entomol Res 88:617–625CrossRefGoogle Scholar
  67. Le Masurier AD (1987) A comparative study of the relationship between host size and brood size in Apanteles spp. (Hymenoptera: Braconidae). Ecol Entomol 12:383–393CrossRefGoogle Scholar
  68. Leiby RW (1926) The origin of mixed broods in polyembryonic Hymenoptera. Ann Entomological Society of America 19:290–299CrossRefGoogle Scholar
  69. Leiby RW, Hill CC (1923) The twinning and monembryonic development of Platygaster hiemalis, a parasite of the Hessian fly. J Agric Res 25:337–350Google Scholar
  70. Levitan DR, Petersen C (1995) Sperm limitation in the sea. Trends Ecol Evol 10:228–231PubMedCrossRefGoogle Scholar
  71. Libbrecht R, Schwander T, Keller L (2011) Genetic components to caste allocation in a multiple-queen ant species. Evolution 65:2907–2915PubMedCrossRefGoogle Scholar
  72. Loughry WJ, Prodöhl PA, McDonough CM, Avise JC (1998) Polyembryony in armadillos. Am Sci 86:274–279CrossRefGoogle Scholar
  73. Mani SR, Megosh H, Lin H (2014) PIWI proteins are essential for early Drosophila embryogenesis. Dev Biol 385:340–349PubMedCrossRefGoogle Scholar
  74. Marchal P (1904) Recherches sur la biologie et le developpement des Hymenopteres parasites. Archives de zoologie expérimentale et générale 2:257–335Google Scholar
  75. Matsuura K, Vargo EL, Kawatsu K, Labadie PE, Nakano H, Yashiro T, Tsuji K (2009) Queen succession through asexual reproduction in termites. Science 323:1687PubMedCrossRefGoogle Scholar
  76. Mayhew PJ, Glaizot O (2001) Integration theory of clutch size and body size evolution for parasitoids. Oikos 92:372–376CrossRefGoogle Scholar
  77. Michener CD (1969) Comparative social behavior of bees. Annu Rev Entomol 14:299–342CrossRefGoogle Scholar
  78. Mills NJ, Kuhlmann U (2004) Oviposition behavior of Trichogramma platneri Nagarkatti and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) in patches of single and clustered host eggs. Biol Control 30:42–51CrossRefGoogle Scholar
  79. Moleszka R (2008) Epigenetic integration of environmental and genomic signals in honey bees. Epigenetics 3:188–192CrossRefGoogle Scholar
  80. Morag N, Bouskila A, Harari A, Keasar T (2011a) Trans-generational effects of maternal rearing density on offspring development time in a parasitoid wasp. Physiol Entomol 36:294–298CrossRefGoogle Scholar
  81. Morag N, Harari AR, Bouskilla A, Keasar T (2011b) Low maternal host-encounter rate enhances offspring proliferation in a polyembryonic parasitoid. Behav Ecol Sociobiol 65:2287–2296CrossRefGoogle Scholar
  82. Morag N, Bouskila A, Rapp O, Segoli M, Keasar T, Harari AR (2011c) The mating status of mothers and offspring sex affect clutch size in a polyembryonic parasitoid wasp. Anim Behav 81:865–870CrossRefGoogle Scholar
  83. Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407PubMedPubMedCentralCrossRefGoogle Scholar
  84. O’Donnell S (1998) Reproductive caste determination in eusocial wasps (Hymenoptera: Vespidae). Annu Rev Entomol 43:323–346PubMedCrossRefGoogle Scholar
  85. Ode PJ, Strand MR (1995) Progeny and sex allocation decisions of the polyembryonic wasp Copidosoma floridanum. J Anim Ecol 64:213–224CrossRefGoogle Scholar
  86. Ode PJ, Keasar T, Segoli M (2018) Lessons from the multitudes: insights from polyembryonic wasps for behavioral ecology. Curr Opin Insect Sci 27:32–37PubMedCrossRefGoogle Scholar
  87. Ogata N, Yokoyama T, Iwabuchi K (2012) Transcriptome responses of insect fat body cells to tissue culture environment. PLoS One 7:e34940PubMedPubMedCentralCrossRefGoogle Scholar
  88. Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, PrincetonGoogle Scholar
  89. Otsuki T, Uka D, Ito H, Ichinose G, Nii M, Morita S, Sakamoto T, Nishiko M, Tabunoki H, Kobayashi K, Matsuura K, Iwabuchi K, Yoshimura J (2019) Mass killing by female soldier larvae is adaptive for the killed male larvae in a polyembryonic wasp. Sci Rep 9:7357PubMedPubMedCentralCrossRefGoogle Scholar
  90. Parker HL (1931) Macrocentrus gifuensis Ashmead, a polyembryonic braconid parasite in the European corn borer. USDA Tech Bull 230:1–63Google Scholar
  91. Patterson JT (1915) Observations on the development of Copidosoma gelechiae. Biol Bull 24:333–373CrossRefGoogle Scholar
  92. Patterson JT (1917) Studies of the biology of Paracopidosomopsis. I. Data on the sexes. Biol Bull 32:291–305CrossRefGoogle Scholar
  93. Patterson JT (1919) Polyembryony and sex. J Hered 10:344–352CrossRefGoogle Scholar
  94. Patterson JT (1927) Polyembryony in animals. Q Rev Biol 2:399–426CrossRefGoogle Scholar
  95. Rautiala P, Gardner A (2016) Intragenomic conflict over soldier allocation in polyembryonic parasitoid wasps. Am Nat 187:E106–E115PubMedCrossRefGoogle Scholar
  96. Roff DA (2002) Life history evolution. Sinauer Associates, Inc., SunderlandGoogle Scholar
  97. Ryland JS (1996) Polyembryony ‘paradox’: the case of cyclostomate Bryozoa. Trends Ecol Evol 11:26PubMedCrossRefGoogle Scholar
  98. Saeki Y, Crowley PH (2013) The size-number trade-off and components of fitness in clonal parasitoid broods. Entomol Exp Appl 149:241–249CrossRefGoogle Scholar
  99. Saeki Y, Crowley PH, Fox CW, Potter DA (2009) A sex-specific size-number tradeoff in clonal broods. Oikos 118:1552–1560CrossRefGoogle Scholar
  100. Salt G (1968) The resistance of insect parasitoids to the defence reactions of their hosts. Biol Rev Camb Philos Soc 43:200–232PubMedCrossRefGoogle Scholar
  101. Schwager EE, Meng Y, Extavour CG (2015) Vasa and piwi are required for mitotic integrity in early embryogenesis in the spider Parasteatoda tepidariorum. Dev Biol 402:276–290PubMedCrossRefGoogle Scholar
  102. Schwander T, Keller L (2008) Genetic compatibility affects queen and worker caste determination. Science 322:552–552PubMedCrossRefGoogle Scholar
  103. Segoli M, Bouskila A, Harari AR, Keasar T (2009a) Developmental patterns in the polyembryonic parasitoid wasp Copidosoma koehleri. Arthropod Struct Dev 38:84–90PubMedCrossRefGoogle Scholar
  104. Segoli M, Harari AR, Bouskila A, Keasar T (2009b) Brood size in a polyembryonic parasitoid wasp is affected by relatedness among competing larvae. Behav Ecol 20:761–767CrossRefGoogle Scholar
  105. Segoli M, Harari AR, Bouskila A, Keasar T (2009c) Host handling time in a polyembryonic wasp is affected both by previous experience and by host state (parasitized or not). J Insect Behav 22:501–510CrossRefGoogle Scholar
  106. Segoli M, Keasar T, Harari AR, Bouskila A (2009d) Limited kin discrimination abilities mediate tolerance toward relatives in polyembryonic parasitoid wasps. Behav Ecol 20:1262–1267CrossRefGoogle Scholar
  107. Segoli M, Keasar T, Bouskila A, Harari A (2010a) Host choice decisions in the polyembryonic wasp Copidosoma koehleri (Hymenoptera: Encyrtidae). Physiol Entomol 35:40–45CrossRefGoogle Scholar
  108. Segoli M, Harari AR, Bouskila A, Keasar T (2010b) The effect of host starvation on parasitoid brood size in a polyembryonic wasp. Evol Ecol Res 12:259–267Google Scholar
  109. Segoli M, Harari AR, Rosenheim JA, Bouskila A, Keasar T (2010c) The evolution of polyembryony in parasitoid wasps. J Evol Biol 23:1807–1819PubMedCrossRefGoogle Scholar
  110. Shaham R, Ben-Shlomo R, Motro U, Keasar T (2016) Genom methylation patterns across castes and generations in a parasitoid wasp. Ecol Evol 6:7943–7953PubMedPubMedCentralCrossRefGoogle Scholar
  111. Silvestri F (1937) Insect polyembryony and its general biological aspects. Bull Mus Comp Zool 81:469–498Google Scholar
  112. Skinner SW (1982) Maternally inherited sex ratio in the parasitoid wasp Nasonia vitripennis. Science 215:133–134CrossRefGoogle Scholar
  113. Slansky F Jr (1986) Nutritional ecology of endoparasitic insects and their hosts: an overview. J Insect Physiol 32:255–261CrossRefGoogle Scholar
  114. Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108:499–506CrossRefGoogle Scholar
  115. Smith MS, Milton I, Strand MR (2010) Phenotypically plastic traits regulate caste formation and soldier function in polyembryonic wasps. J Evol Biol 23:2677–2684PubMedPubMedCentralCrossRefGoogle Scholar
  116. Strand MR (1989a) Clutch size, sex ratio and mating by the polyembryonic encyrtid Copidosoma floridanum (Hymenoptera: Encyrtidae). Fla Entomol 72:32–42CrossRefGoogle Scholar
  117. Strand MR (1989b) Oviposition behavior and progeny allocation of the polyembryonic wasp Copidosoma floridanum (Hymenoptera: Encyrtidae). J Insect Behav 2:355–369CrossRefGoogle Scholar
  118. Strand MR (2003) Polyembryony. In: Carde R, Resch V (eds) Encyclopedia of insects. Academic Press, San Diego, pp 928–932Google Scholar
  119. Strand MR, Grbic M (1997a) The life history and development of polyembryonic parasitoids. In: Beckage NE (ed) Parasites and pathogens. Chapman & Hall, New York, pp 37–56CrossRefGoogle Scholar
  120. Strand MR, Grbic M (1997b) The development and evolution of polyembryonic insects. Curr Top Dev Biol 35:121–160PubMedCrossRefGoogle Scholar
  121. Strand MR, Johnson JA, Culin JD (1990) Intrinsic interspecific competition between the polyembryonic parasitoid Copidosoma floridanum and solitary endoparasitoid Microplitis demolitor in Pseudoplusia includens. Entomol Exp Appl 55:275–284CrossRefGoogle Scholar
  122. Taylor PD (1981) Intra-sex and inter-sex sibling interactions as sex ratio determinants. Nature 291:64–66CrossRefGoogle Scholar
  123. Trivers RL, Hare H (1976) Haplodiploidy and the evolution of the social insects. Science 191:249–263PubMedCrossRefGoogle Scholar
  124. Uka D, Hiraoka T, Iwabuchi K (2006) Physiological suppression of the larval parasitoid Glyptapanteles pallipes by the polyembryonic parasitoid Copidosoma floridanum. J Insect Physiol 52:1137–1142PubMedCrossRefGoogle Scholar
  125. Uka D, Takahashi-Nakaguchi A, Yoshimura J, Iwabuchi K (2013) Male soldiers are functional in the Japanese strain of a polyembryonic wasp. Sci Rep 3:2312PubMedPubMedCentralCrossRefGoogle Scholar
  126. Uka D, Sakamoto T, Yoshimura J, Iwabuchi K (2016) Sexual complementarity between host humoral toxicity and soldier caste in a polyembryonic wasp. Sci Rep 6:29336PubMedPubMedCentralCrossRefGoogle Scholar
  127. Utsunomiya A, Iwabuchi K (2002) Interspecific competition between the polyembryonic wasp Copidosoma floridanum and the gregarious endoparasitoid Glyptapanteles pallipes. Entomol Exp Appl 104:353–362CrossRefGoogle Scholar
  128. van Alphen JJM, Visser ME (1990) Superparasitism as an adaptive strategy for insect parasitoids. Annu Rev Entomol 35:59–79PubMedCrossRefGoogle Scholar
  129. Volkl W, Kroupa AS (1997) Effects of adult mortality risks on parasitoid foraging tactics. Anim Behav 54:349–359CrossRefGoogle Scholar
  130. Walter GH, Clarke AR (1992) Unisexual broods and sex ratios in a polyembryonic encyrtid parasitoid (Copidosoma sp.: hymenoptera). Oecologia 89:147–149PubMedCrossRefGoogle Scholar
  131. Wang Z, Ye X, Shi M, Li F, Wang Z, Zhou Y, Gu Q, Wu X, Yin C, Guo D, Hu R, Hu N, Chen T, Zheng B, Zou J, Zhan L, Wei S, Wang Y, Huang J, Fang X, Strand MR, Chen X (2018) Parasitic insect-derived miRNAs modulate host development. Nat Commun 9:2205PubMedPubMedCentralCrossRefGoogle Scholar
  132. Weiblen GD (2002) How to be a fig wasp. Annu Rev Entomol 47:299–330PubMedCrossRefGoogle Scholar
  133. Werren JH, Skinner SW, Vharnov EL (1981) Paternal inheritance of a daughterless sex ratio factor. Nature 293:467–468CrossRefGoogle Scholar
  134. Werren JH, Skinner SW, Huger AM (1986) Male killing bacteria in a parasitic wasp. Science 231:990–992PubMedCrossRefGoogle Scholar
  135. West S (2009) Sex allocation. Princeton University Press, Princeton, NJCrossRefGoogle Scholar
  136. Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am Nat 128:13–34CrossRefGoogle Scholar
  137. Williams GC (1966) Adaptation and natural selection. Princeton University Press, PrincetonGoogle Scholar
  138. Williams GC (1975) Sex and evolution. Princeton University Press, PrincetonGoogle Scholar
  139. Wilson EO (1971) The insect societies. Belknap, Harvard University Press, CambridgeGoogle Scholar
  140. Wilson EO (1985) The Sociogenesis of insect colonies. Science 228:1489–1495PubMedCrossRefGoogle Scholar
  141. Yajima M, Wessel GM (2011) Small micromeres contribute to the germline in the sea urchin. Development 138:237–243PubMedPubMedCentralCrossRefGoogle Scholar
  142. Yin C, Li M, Hu J, Lang K, Chen Q, Liu J, Guo D, He K, Dong Y, Luo J, Song Z, Walters JR, Zhang W, Li F, Chen X (2018) The genomic features of parasitism, polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum. BMC Genomics 19:420PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zappalà L, Hoy MA (2004) Reproductive strategies and parasitization behavior of Ageniaspis citricola, a parasitoid of the citrus leafminer Phyllocnistis citrella. Ann Entomol Soc Am 91:654–660Google Scholar
  144. Zhurov V, Terzin T, Grbic M (2004) Early blastomere determines embryo proliferation and caste fate in a polyembryonic wasp. Nature 432:746–769CrossRefGoogle Scholar
  145. Zhurov V, Terzin T, Grbić M (2007) (in)discrete charm of the polyembryony: evolution of embryo cloning. Cell Mol Life Sci 64:2790–2798PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kikuo Iwabuchi
    • 1
  1. 1.Tokyo University of Agriculture and TechnologyFuchuJapan

Personalised recommendations