Advertisement

Sociality in Polyembryonic Parasitoids

  • Kikuo Iwabuchi
Chapter
  • 13 Downloads
Part of the Entomology Monographs book series (ENTMON)

Abstract

Some polyembryonic parasitoid species produce two morphologically different types of larvae from a single egg. The specialized larval morph that forms in addition to the reproductive larvae has been variously described as asexual (Silvestri 1906), teratoid (Parker and Thompson 1928), and precocious (Doutt 1947, 1952) larvae and is characterized by its slender body and developed mandibles. In Copidosoma floridanum, many reproductive larvae appear at the final-instar stage of the host and eventually develop into adults, whereas a small number of precocious larvae first appear at the early-instar stage of the host and then die without undergoing metamorphosis (Fig. 4.1). Thus, the precocious larvae represent a sterile caste. There are two hypotheses for why precocious larvae are produced: (1) to act as soldier larvae that defend sibling embryos against competitors invading the same host and (2) to adjust the sex ratio in mixed-sex broods. Therefore, the function and evolution of precocious larvae have mostly been examined from the viewpoint of sociobiology.

Keywords

Sociality Precocious larva Soldier Interspecific competition Toxic factor Sexual conflict 

References

  1. Akimoto S (1996) Ecological factors promoting the evolution of colony defense in aphids: computer simulations. Insect Soc 43:1–15CrossRefGoogle Scholar
  2. Baehrecke EH, Aiken JM, Dover BA, Strand MR (1993) Ecdysteroid induction of embryonic morphogenesis in a parasitic wasp. Dev Biol 158:275–287CrossRefGoogle Scholar
  3. Bowker CL, Ross KG, Strand MR (2014) The metabolic enzyme phosphoglucose isomerase (Pgi) affects the outcome of intra-specific competition in a polyembryonic wasp. Ecol Entomol 39:648–655CrossRefGoogle Scholar
  4. Browning HW, Oatman ER (1984) Intra- and interspecific relationships among some parasites of Trichoplusia ni (Lepidoptera: Noctuidae). Environ Entomol 13:551–556CrossRefGoogle Scholar
  5. Byers JR, Yu DS, Jones JW (1993) Parasitism of the army cutworm, Euxoa auxiliaris (Grt) (Lepidoptera, Noctuidae), by Copidosoma bakeri (Howard) (Hymenoptera, Encyrtidae) and effect on crop damage. Can Entomol 125:329–335CrossRefGoogle Scholar
  6. Cheng HH (1977) Insect parasites of the darksided cutworm, Euxoa messoria (Lepidoptera: Noctuidae), in Ontario. Can Entomol 109:137–142CrossRefGoogle Scholar
  7. Chow FJ, Mackauer M (1984) Inter- and intra-specific competition in Aphidius smithi and Praon pequodorum (Hymenoptera: Aphidiidae). Can Entomol 116:1097–1107CrossRefGoogle Scholar
  8. Chow FJ, Mackauer M (1986) Host discrimination and larval competition in the aphid parasite Ephredrus californicus. Entomol Exp Appl 41:243–254CrossRefGoogle Scholar
  9. Conti E, Jones WA, Bin F, Vinson SB (1997) Oviposition behavior of Anaphes iole, an egg parasitoid of Lygushesperus (Hymenoptera:Mymaridae;Heteroptera: Miridae). Ann Entomol Soc Am 90:91–101CrossRefGoogle Scholar
  10. Corley LS, White MA, Strand MR (2005) Both endogenous and environmental factors affect embryo proliferation in the polyembryonic wasp Copidosoma floridanum. Evol Dev 7:115–121PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cronin JT, Strong DR (1993) Substantially submaximal oviposition rates by a Mymarid egg parasitoid in the laboratory and field. Ecology 74:1813–1825CrossRefGoogle Scholar
  12. Cruz YP (1981) A sterile defender morph in a polyembryonic hymenopterous parasite. Nature 294:446–477CrossRefGoogle Scholar
  13. Cruz YP (1986) The defender role in the precocious larvae of Copidosomopsis tanytmemus (Encyrtidae, Hymenoptera). J Exp Zool 237:309–318CrossRefGoogle Scholar
  14. Cruz YP, Oelhaf RC Jr, Jockusch EL (1990) Polymorphic precocious larvae in the polyembryonic parasitoid Copidosoma tanytmema (Hymenoptera: Encyrtidae). Ann Entomol Soc Am 83:549–554CrossRefGoogle Scholar
  15. Donnel DM, Corley LS, Chen G, Strand MR (2004) Caste determination in a polyembryonic wasp involves inheritance of germ cells. Proc Natl Acad Sci U S A 101:10095–10100CrossRefGoogle Scholar
  16. Doutt RL (1947) Polyembryony in Copidosoma koehleri Blanchard. Am Nat 81:435–453CrossRefGoogle Scholar
  17. Doutt RL (1952) The teratoid larva of polyembryonic Encyrtidae (Hymenoptera). Can Entomol 84:247–250CrossRefGoogle Scholar
  18. Dunn J, Dunn DW, Strand MR, Hardy IC (2017) Higher aggression towards closer relatives by soldier larvae in a polyembryonic wasp. Biol Lett 10:20140229CrossRefGoogle Scholar
  19. Fitzgerald TD, Simeone JB (1971) Polyembryony in Paraleurocerus bicoloripes (Hymenoptera: Encyrtidae). Ann Entomol Soc Am 64:774–777CrossRefGoogle Scholar
  20. Giron D, Strand MR (2004) Host resistance and the evolution of kin recognition in polyembryonic wasps. Proc R Soc B Biol Sci 271(Suppl 6):S395–S398Google Scholar
  21. Giron D, Dunn DW, Hardy ICW, Strand MR (2004) Aggression by polyembryonic wasp soldiers correlates with kinship but not resource competition. Nature 430:676–679CrossRefGoogle Scholar
  22. Giron D, Harvey JA, Johnson JA, Strand MR (2007a) Male soldier caste larvae are non-aggressive in the polyembryonic wasp Copidosoma floridanum. Biol Lett 3:431–434PubMedPubMedCentralCrossRefGoogle Scholar
  23. Giron D, Ross KG, Strand MR (2007b) Presence of soldier larvae determines the outcome of competition in a polyembryonic wasp. J Evol Biol 20:165–172PubMedCrossRefPubMedCentralGoogle Scholar
  24. Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, PrincetonCrossRefGoogle Scholar
  25. Gordon SD, Strand MR (2009) The polyembryonic wasp Copidosoma floridanum produces two castes by differentially parceling the germ line to daughter embryos during embryo proliferation. Dev Genes Evol 219:445–454CrossRefGoogle Scholar
  26. Grbic M (2000) “Alien” wasps and evolution of development. BioEssays 22:920–932PubMedCrossRefPubMedCentralGoogle Scholar
  27. Grbic M, Ode PJ, Strand MR (1992) Sibling rivalry and brood sex ratios in polyembryonic wasps. Nature 360:254–256CrossRefGoogle Scholar
  28. Grbic M, Rivers D, Strand M (1997) Caste formation in the polyembryonic wasp Copidosoma floridanum (Hymenoptera: Encyrtidae): in vivo and in vitro analysis. J Insect Physiol 43:553–565CrossRefGoogle Scholar
  29. Hardy ICW (1996) Precocious larvae in the polyembryonic parasitoid Copidosoma sosares (Hymenoptera: Encyrtidae). Entomol Bericht Amst 56:88–92Google Scholar
  30. Harvey JA, Corley LS, Strand MR (2000) Competition induces adaptive shifts in caste ratios of a polyembryonic wasp. Nature 406:183–118PubMedPubMedCentralCrossRefGoogle Scholar
  31. Harvey JA, Poelman EH, Tanaka T (2013) Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu Rev Entomol 58:333–351PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hasegawa E (1997) The optimal caste ratio in polymorphic ants: estimation and empirical evidence. Am Nat 149:706–722CrossRefGoogle Scholar
  33. Karl I, Schmitt T, Fischer K (2008) Phosphoglucose isomerase genotype affects life-history traits and cold stress resistance in a copper butterfly. Funct Ecol 22:887–894CrossRefGoogle Scholar
  34. Katzner TE, Cruz YP (1998) Survival of the polyembryonic parasitoid Copidosoma tanytmema (Hymenoptera: Encyrtidae) in envenomized larvae of its host Anagasta kuehniella (Lepidoptera: Pyralidae). Ann Entomol Soc Am 91:808–812CrossRefGoogle Scholar
  35. Keasar T, Segoli M, Steinberg R, Giron D, Strand MR, Bouskila A, Harari A (2006) Costs and consequences of superparasitism in the polyembryonic parasitoid Copidosoma koehleri (Hymenoptera: Encyrtidae). Ecol Entomol 31:277–283CrossRefGoogle Scholar
  36. King PE, Rafai J (1970) A possible mechanism for initiating the parthenogenetic development of eggs in a parasitoid Hymenopteran, Nasonia vitripennis (Walker) (Pteromalidae). Entomologist 106:118–120Google Scholar
  37. Lasko PF, Ashburner M (1988) The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335:611–617PubMedCrossRefGoogle Scholar
  38. Lasko PF, Ashburner M (1990) Posterior localization of vasa protein correlates with, but is not sufficient, for pole cell development. Genes Dev 4:905–921PubMedCrossRefGoogle Scholar
  39. Leiby RW (1922) The polyembryonic development of Copidosoma gelechiae with notes on its biology. J Morphol 37:195–285CrossRefGoogle Scholar
  40. Lumsden JC (1982) The social regulation of physical caste: the superorganism revived. J Theor Biol 95:749–781CrossRefGoogle Scholar
  41. Mandour NS, Mahmoud MF, Osman MA-N, Qiu B (2008) Efficiency, intrinsic competition and interspecific host discrimination of Copidosoma desantisi and Trichogramma evanescens, two parasitoids of Phthorimaea operculella. Biocontrol Sci Tech 18:903–912CrossRefGoogle Scholar
  42. Marris GC, Hubbard SF, Scrimgeour C (1996) The perception of genetic similarity by the solitary parthenogenetic parasitoid Venturia canescens, and its effects on the occurrence of superparasitism. Entomol Exp Appl 78:167–174CrossRefGoogle Scholar
  43. McBrien H, Mackauer M (1990) Heterospecific larval competition and host discrimination in two species of aphid parasitoids: Aphidius ervi and Aphidius smithi. Entomol Exp Appl 56:145–153CrossRefGoogle Scholar
  44. Mitikka V, Hanski I (2010) Pgi genotype influences flight metabolism at the expanding range margin of the European map butterfly. Ann Zool Fennici 47:1–14CrossRefGoogle Scholar
  45. Nijhout HF (1999) Control mechanisms of polyphonic development in insects. Bioscience 49:181–192CrossRefGoogle Scholar
  46. Ode PJ, Strand MR (1995) Progeny and sex allocation decisions of the polyembryonic wasp Copidosoma floridanum. J Anim Ecol 64:213–224CrossRefGoogle Scholar
  47. Otsuki T, Uka D, Ito H, Ichinose G, Nii M, Morita S, Sakamoto T, Nishiko M, Tabunoki H, Kobayashi K, Matsuura K, Iwabuchi K, Yoshimura J (2019) Mass killing by female soldier larvae is adaptive for the killed male larvae in a polyembryonic wasp. Sci Rep 9:7357PubMedPubMedCentralCrossRefGoogle Scholar
  48. Parker HL, Thompson WR (1924) Contribution a la biologie des chalcidiens entomophages. Ann Soc Entomol Fr 97:425–465Google Scholar
  49. Parker HL, Thompson WB (1928) Contribution a la biologie des chalcidiens entomophages. Ann Soci Entomol Fr 97:425–465Google Scholar
  50. Passera L, Roncin E, Kaufmann B, Keller L (1996) Increased soldier production in ant colonies exposed to intraspecific competition. Nature 379:630–631CrossRefGoogle Scholar
  51. Patterson JT (1915) Observations on the development of Copidosoma gelechiae. Biol Bull 29:333–373CrossRefGoogle Scholar
  52. Patterson JT (1918) Studies on the biology of Paracopidosomopsis. IV. The asexual larvae. Biol Bull 35:362–377CrossRefGoogle Scholar
  53. Rank NE, Bruce DA, McMillan DM, Barclay C, Dahlhoff EP (2007) Phosphoglucose isomerase genotype affects running speed and heat shock protein expression after exposure to extreme temperatures in a montane willow beetle. J Exp Biol 210:750–764PubMedCrossRefPubMedCentralGoogle Scholar
  54. Saeki Y, Crowley PH, Fox CW, Potter DA (2009) A sex-specific size-number tradeoff in clonal broods. Oikos 118:1552–1560CrossRefGoogle Scholar
  55. Salt G (1961) Competition among insect parasites. Mechanisms in biological competition. Symp Soc Exp Biol 15:96–119Google Scholar
  56. Sarhan AA, Shoukry AA, Mandour NS (1997a) Biological studies on the polyembryonic parasitoid Copidosoma desantisi Annecke & Mynhardt (Hymenoptera: Encyrtidae). In: Proceedings of the 7th National Conference of Pests & Diseases of Vegetables & Fruits, pp 586–607Google Scholar
  57. Sarhan AA, Shoukry AA, Mandour NS (1997b) Embryonic and postembryonic development of the polyembryonic parasitoid Copidosoma desantisi Annecke & Mynhardt (Hymenoptera: Encyrtidae). In: Proceedings of the 7th National Conference of Pests & Diseases of Vegetables and Fruits, pp 608–623Google Scholar
  58. Schwander T, Lo N, Beekman M, Oldroyd BP, Keller L (2010) Nature versus nurture in social insect caste differentiation. Trends Ecol Evol 25:275–282PubMedCrossRefPubMedCentralGoogle Scholar
  59. Segers FHID, Menezes C, Vollet-Neto A, Lambert D, Gruter C (2015) Soldier production in a stingless bee depends on rearing location and nurse behavior. Behav Ecol Sociobiol 69:613–623CrossRefGoogle Scholar
  60. Segoli M, Bouskila A, Harari AR, Keasar T (2009a) Developmental patterns in the polyembryonic parasitoid wasp Copidosoma koehleri. Arthropod Struct Dev 38:84–90CrossRefGoogle Scholar
  61. Segoli M, Harari AR, Bouskila A, Keasar T (2009b) Brood size in a polyembryonic parasitoid wasp is affected by relatedness among competing larvae. Behav Ecol 20:761–767CrossRefGoogle Scholar
  62. Segoli M, Harari AR, Bouskila A, Keasar T (2010) The effect of host starvation on parasitoid brood size in a polyembryonic wasp. Evol Ecol Res 12:259–267Google Scholar
  63. Shibao H (1998) Social structure and the defensive role of soldiers in a eusocial bamboo aphid, Pseudoregma bambucicola (Homoptera: Aphididae): a test of the defence-optimization hypothesis. Res Popul Ecol 40:325–333CrossRefGoogle Scholar
  64. Shibao H, Kutsukake M, Fukatsu T (2003) Density triggers soldier production in a social aphid. Proc Roy Soc Lond B (Suppl) 271:S71–S74Google Scholar
  65. Silvestri F (1906) Controbuzioni all a conscenza biologica degli imenotheri parasiti. Biologia del Litomastix truncatellus (Dalm) (2 nota preliminare). Bollettino del Laboratorio di zoologia generale e agraria della R. Scuola superiore d’agricoltura in Portici 6:3–59Google Scholar
  66. Smith MS, Milton I, Strand MR (2010) Phenotypically plastic traits regulate caste formation and soldier function in polyembryonic wasps. J Evol Biol 23:2677–2684PubMedPubMedCentralCrossRefGoogle Scholar
  67. Smith MS, Shirley A, Strand MR (2017) Copidosoma floridanum (Hymenoptera: Encyrtidae) rapidly alters production of soldier embryos in response to competition. Ann Entomol Soc Am 110:501–505PubMedPubMedCentralCrossRefGoogle Scholar
  68. Snow SJ (1925) Observations on the cutworm, Euxoa auxiliaris Grote, and its principal parasites. J Econ Entomol 18:602–609CrossRefGoogle Scholar
  69. Stern DL, Foster WA (1996) The evolution of soldiers in aphids. Biol Rev 71:27–79PubMedCrossRefPubMedCentralGoogle Scholar
  70. Strand MR (1989) Development of the polyembryonic parasitoid Copidosoma floridanum in Trichoplusia ni. Entomol Exp Appl 50:37–46CrossRefGoogle Scholar
  71. Strand MR, Grbic M (1997a) The life history and development of polyembryonic parasitoids. In: Beckage NE (ed) Parasites and pathogens. Chapman & Hall, London, pp 37–56CrossRefGoogle Scholar
  72. Strand MR, Grbic M (1997b) The development and evolution of polyembryonic insects. Curr Top Dev Biol 35:121–160CrossRefGoogle Scholar
  73. Strand MR, Johnson JA, Culin JD (1990) Intrinsic interspecific competition between the polyembryonic parasitoid Copidosoma floridanum and solitary endoparasitoid Microplitis demolitor in Pseudoplusia includens. Entomol Exp Appl 55:275–284CrossRefGoogle Scholar
  74. Takano Y, Ono H, Sakamoto T, Yoshimura J, Iwabuchi K (2019) Effects of heat shock and ambient temperature on female soldier production in a polyembryonic parasitic wasp. Physiol Entomol 44:133–139CrossRefGoogle Scholar
  75. Uka D, Hiraoka T, Iwabuchi K (2006) Physiological suppression of the larval parasitoid Glyptapanteles pallipes by the polyembryonic parasitoid Copidosoma floridanum. J Insect Physiol 52:1137–1142CrossRefGoogle Scholar
  76. Uka D, Takahashi-Nakaguchi A, Yoshimura J, Iwabuchi K (2013) Male soldiers are functional in the Japanese strain of a polyembryonic wasp. Sci Rep 3:2312PubMedPubMedCentralCrossRefGoogle Scholar
  77. Uka D, Sakamoto T, Yoshimura J, Iwabuchi K (2016) Sexual complementarity between host humoral toxicity and soldier caste in a polyembryonic wasp. Sci Rep 6:29336PubMedPubMedCentralCrossRefGoogle Scholar
  78. Utsunomiya A, Iwabuchi K (2002) Interspecific competition between the polyembryonic wasp Copidosoma floridanum and the gregarious endoparasitoid Glyptapanteles pallipes. Entomol Exp Appl 104:353–362CrossRefGoogle Scholar
  79. van Baaren J, Boivin G, Nenon JP (1994) Interspecific and intraspecific host discrimination in two closely-related egg parasitoids. Oecologia 100:325–330PubMedCrossRefPubMedCentralGoogle Scholar
  80. van Dijken MJ, van Stratum P, van Alphen JJM (1992) Recognition of individual-specific marked parasitized hosts by the solitary parasitoid Epidinocarsis lopezi. Behav Ecol Sociobiol 30:77–82CrossRefGoogle Scholar
  81. Vinson SB (1972) Competition and host discrimination between two species of tobacco budworm parasitoids. Ann Entomol Soc Am 65:229–236CrossRefGoogle Scholar
  82. Vinson SB, Iwantsch GF (1980) Host regulation by insect parasitoids. Q Rev Biol 55:143–165CrossRefGoogle Scholar
  83. Watanabe K, Nishide Y, Roff DA, Yoshimura J, Iwabuchi K (2012) Environmental and genetic controls of soldier caste in a parasitic social wasp. Sci Rep 2:729PubMedPubMedCentralCrossRefGoogle Scholar
  84. Wheat CW (2010) Phosphoglucose isomerase (Pgi) performance and fitness effects among arthropods and its potential role as an adaptive marker in conservation genetics. Conserv Genet 11:387–397CrossRefGoogle Scholar
  85. Wilson EO (1971) The insect societies. Harvard University Press, CambridgeGoogle Scholar
  86. Yamamoto D, Henderson R, Corley LS, Iwabuchi K (2007) Intrinsic, inter-specific competition between egg, egg-larval, and larval parasitoids of plusiine loopers. Ecol Entomol 32:221–228Google Scholar
  87. Zhurov V, Terzin T, Grbic M (2004) Early blastomere determines embryo proliferation and caste fate in a polyembryonic wasp. Nature 432:746–769CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kikuo Iwabuchi
    • 1
  1. 1.Tokyo University of Agriculture and TechnologyFuchuJapan

Personalised recommendations