A Smart Data Approach for Automatic Data Analysis

  • Fouad SassiteEmail author
  • Malika Addou
  • Fatimazahra Barramou
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1076)


The purpose of this paper was to propose an automatic data analysis approach to achieve real-time processing for heterogeneous collected big data volumes from multiple sources. With this paradigm, which has limited traditional analytical capabilities to deal with the rapidly changing data storage capacities, the importance was focused on the value aspect of the smart data approach in order to accelerate data processing and decision-making. It was therefore important to find a method of extracting the most relevant data (smart data), the most useful in real time, from the massive quantities of data from the big data. A multilayer architecture and a projection of agents on this architecture were proposed for real-time big data processing using the smart data approach, with three layers: data acquisition, data management and processing and data services.


Automatic data analysis Big data Smart data 


  1. 1.
    Dumbill, E.: Making sense of big data. Big Data 1, 1–2 (2013). Scholar
  2. 2.
    Sheth, A.: Transforming big data into smart data: deriving value via harnessing volume, variety, and velocity using semantic techniques and technologies. In: 2014 IEEE 30th International Conference on Data Engineering. pp. 2–2 (2014).
  3. 3.
    Iafrate, F.: A Journey from big data to smart data. In: Benghozi, P., Krob, D., Lonjon, A., Panetto, H. (eds.) Digital Enterprise Design & Management. pp. 25–33. Springer International Publishing (2014)Google Scholar
  4. 4.
    Lopez, V., Kotoulas, S., Sbodio, M.L., Stephenson, M., Gkoulalas-Divanis, A., Aonghusa, P.M.: QuerioCity: a linked data platform for urban information management. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) The Semantic Web—ISWC 2012, pp. 148–163. Springer, Berlin (2012)CrossRefGoogle Scholar
  5. 5.
    Dustdar, S., Pichler, R., Savenkov, V., Truong, H.-L.: Quality-aware service-oriented data integration: requirements, state of the art and open challenges. ACM SIGMOD Rec. 41, 11 (2012). Scholar
  6. 6.
    De vettor, P., Mrissa, M., Benslimane, D.: Models and adaptive architecture for smart data management. In: 24th IEEE International Conference on Enabling Technologies Infrastructure for Collaborative Enterprises (WETICE 2015), Larnaca, Cyprus (2015)Google Scholar
  7. 7.
    Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Real-Time Data Systems. Manning Publications Co., New York (2015)Google Scholar
  8. 8.
    Michael, W.: An Introduction to MultiAgent Systems, 2nd EdnGoogle Scholar
  9. 9.
    Twardowski, B., Ryzko, D.: Multi-agent Architecture For Real-Time Big Data Processing. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 3, pp. 333–337 (2014).
  10. 10.
    Geerdink, B.: A reference architecture for big data solutions introducing a model to perform predictive analytics using big data technology. In: 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013). pp. 71–76. IEEE, London, United Kingdom (2013).
  11. 11.
    Avgeriou, P., Zdun, U.: Architectural patterns revisited—a pattern language. In: In 10th European Conference on Pattern Languages of Programs (EuroPlop 2005), Irsee, pp. 1–39 (2005)Google Scholar
  12. 12.
    Paik, I., Chen, W., Huhns, M.N.: A scalable architecture for automatic service composition. IEEE Trans. Serv. Comput. 7, 82–95 (2014). Scholar
  13. 13.
    Siriweera, T.H.A.S., Paik, I., Kumara, B.T.G.S., Koswatta, K.R.C.: Intelligent big data analysis architecture based on automatic service composition. In: 2015 IEEE International Congress on Big Data. pp. 276–280. IEEE, New York City, NY, USA (2015).
  14. 14.
    Dean, J., Ghemawat, S.: Commun. ACM 51, 107 (2008). Scholar
  15. 15.
    Jain, Y.K., Bhandare, S. K.: Min max normalization based data perturbation method for privacy protection. Int. J. Comput. Communication Tech. 3(4), 45–50 (2014)Google Scholar
  16. 16.
    Li, D., Kar, S., Moura, J.M.F., Poor, H.V., Cui, S.: Distributed Kalman filtering over massive data sets: analysis through large deviations of random Riccati equations. IEEE Trans. Inf. Theory 61, 1351–1372 (2015). Scholar
  17. 17.
    Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A.V., Rong, X.: Data mining for the internet of things: literature review and challenges. Int. J. Distrib. Sens. Netw. 11, 431047 (2015). Scholar
  18. 18.
    Wood, M.F., DeLoach, S.A.: An overview of the multiagent systems engineering methodology. In: Ciancarini, P., Wooldridge, M.J. (eds.) Agent-Oriented Software Engineering, pp. 207–221. Springer, Berlin (2001)CrossRefGoogle Scholar
  19. 19.
    Babar, M., Arif, F.: Real-time data processing scheme using big data analytics in internet of things based smart transportation environment. J Ambient Intell. Hum. Comput. (2018). Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Fouad Sassite
    • 1
    Email author
  • Malika Addou
    • 1
  • Fatimazahra Barramou
    • 1
  1. 1.Architecture, System and Networks Team (ASYR)—Laboratory of Systems Engineering (LaGeS)Hassania School of Public Works EHTPOasis CasablancaMorocco

Personalised recommendations