Advertisement

2D Brain Tumor Segmentation Based on Thermal Analysis Model Using U-Net on GPUs

  • Abdelmajid BousselhamEmail author
  • Omar Bouattane
  • Mohamed Youssfi
  • Abdelhadi Raihani
Conference paper
  • 113 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1076)

Abstract

Brain tumor segmentation allows separating normal and abnormal pixels. In clinical practice, stills a challenging task, due to the complicated structure of the tumors. This paper aims to improve the process of segmentation based on brain tumor thermal profile. Brain tumors are a fast proliferation of abnormal cells, which thermally represent a heat source. In this work, we segment brain tumors using U-Net fully convolutional neural network based on the change on the temperature in the tumor zone. The temperature distributions of the brain including the tumor were generated using the Pennes bioheat transfer equation and converted to grayscale thermal images. Next, U-Net was applied to segment tumors from thermal images. A dataset containing 276 thermal images was created to train the model. As the process of training the model is time-consuming, we used massively parallel architecture based on graphical processing unit (GPU). We tested the model in 25 thermal images, and we obtained a precise segmentation with Accuracy = 0.9965, Precision = 0.9817, Recall = 0.9513, and F1 score = 0.9338. The training time was 20 h in NVIDIA GTX 1060 GPU. The obtained results prove the effectiveness of deep learning and thermal analysis of brain tumors to reinforce segmentation using magnetic resonance imaging (MRI) to increase the accuracy of diagnosis.

Keywords

MRI Bioheat transfer CNN U-Net GPU 

Notes

Acknowledgements

This work is supported by the grant of the National Center for Scientific and Technical Research (CNRST—Morocco) (No. 13UH22016).

References

  1. 1.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015)CrossRefGoogle Scholar
  2. 2.
    Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI braintumor segmentation. Magn. Reson. Imaging 31(8), 1426–1438 (2013)CrossRefGoogle Scholar
  3. 3.
    Angulakshmi, M., Lakshmi Priya, G.G.: Automated brain tumor segmentation techniques—a review. Int. J. Imaging Syst. Technol. 27, 66–77 (2017)Google Scholar
  4. 4.
    Singh, J.F., Magudeeswaran, V.: Thresholding based method for segmentation of MRI brain images. In: International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 280–283 (2017)Google Scholar
  5. 5.
    Ilhan, U., Ilhan, A.: Brain tumor segmentation based on a new threshold approach. Proc. Comput. Sci. 120, 580–587 (2017)CrossRefGoogle Scholar
  6. 6.
    Wu, M.N., Lin, C.C., Chang, C.C.: Brain tumor detection using color-based K-means clustering segmentation. In: Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007), vol. 2, pp. 245–250 (2007)Google Scholar
  7. 7.
    Dhanalakshemi, P., Kanimozhi, T.: Automatic segmentation of brain tumor using k means clustering and its area calculation. Int. J. Adv. Electr. Electron. Eng. 2(2), 130–134 (2013)Google Scholar
  8. 8.
    Ibrahim, R.W., Hasan, A.M., Jalab, H.A.: A new deformable model based on fractional Wright energy function for tumor segmentation of volumetric brain MRI scans. Comput. Methods Programs Biomed. 163, 21–28 (2018)CrossRefGoogle Scholar
  9. 9.
    Thapaliya, K., Pyun, J.-Y., Park, C.-S., Kwon, G.-R.: Level set method with automatic selective local statistics for brain tumor segmentation in MR images. Comput. Med. Imaging Graph. 37(7), 522–537 (2013)CrossRefGoogle Scholar
  10. 10.
    Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  11. 11.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)CrossRefGoogle Scholar
  12. 12.
    Bousselham, A., Bouattane, O., Youssfi, M., Raihani, A.: Towards reinforced brain tumor segmentation on MRI images based on temperature changes on pathologic area. Int. J. Biomed. Imaging, Article ID 1758948 (2019)Google Scholar
  13. 13.
    Pennes, H.H.: Analysis on tissue arterial blood temperature in the resting human forearm. Appl. Physiol. 1(2), 93–122 (1948)CrossRefGoogle Scholar
  14. 14.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015)Google Scholar
  15. 15.
    Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRefGoogle Scholar
  16. 16.
    Kamnitsas, K., Ledig, C., Newcombe, V., Simpson, J., Kane, A., Menon, D., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  17. 17.
    Ait Ali, N., Cherradi, B., El Abbassi, A., Bouattane, O., Youssfi, M.: GPU fuzzy c-means algorithm implementations: performance analysis on medical image segmentation. Multimed. Tools Appl. 77(16), 21221–21243 (2018)CrossRefGoogle Scholar
  18. 18.
    Sriramakrishnan, P., Kalaiselvi, T., Rajeswaran, R.: Modified local ternary patterns technique for brain tumour segmentation and volume estimation from MRI multi-sequence scans with GPU CUDA machine. Biocybern. Biomed. Eng. 39(2), 470–487 (2019)CrossRefGoogle Scholar
  19. 19.
    Wissler, E.H.: Pennes’ 1948 paper revisited. J. Appl. Physiol. 85(1), 35–41 (1998)CrossRefGoogle Scholar
  20. 20.
    Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)CrossRefGoogle Scholar
  21. 21.
    Kermi, A., Mahmoudi, I., Khadir, M.T.: Deep convolutional neural networks using U-Net for automatic brain tumor segmentation in multimodal MRI volumes. Brain Lesion Glioma Mult. Scler. Stroke Trauma. Brain Injuries 11384, 37–48 (2019)Google Scholar
  22. 22.
    Marcinkiewicz, M., Nalepa, J., Lorenzo, P.R., Dudzik, W., Mrukwa, G.: Segmenting brain tumors from MRI using cascaded multi-modal U-Nets. Brain Lesion Glioma Mult. Scler. Stroke Trauma. Brain Injuries 11384, 13–24 (2019)Google Scholar
  23. 23.
    Luna, M., Park, S.H.: 3D patchwise U-Net with transition layers for MR brain segmentation. Brain Lesion Glioma Mult. Scler. Stroke Trauma. Brain Injuries 11383, 394–403 (2019)Google Scholar
  24. 24.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)
  25. 25.
    Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., B¨uchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013)Google Scholar
  26. 26.
    DL4J website: https://deeplearning4j.org/. Accessed 25 Mar 2019

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Abdelmajid Bousselham
    • 1
    Email author
  • Omar Bouattane
    • 1
  • Mohamed Youssfi
    • 1
  • Abdelhadi Raihani
    • 1
  1. 1.Laboratory SSDIAENSET Mohammedia, University Hassan 2 CasablancaCasablancaMorocco

Personalised recommendations