Advertisement

Silhouettes Based-3D Object Reconstruction Using Hybrid Sparse 3D Reconstruction and Volumetric Methods

  • Soulaiman El Hazzat
  • Mostafa Merras
  • Nabil El Akkad
  • Abderrahim Saaidi
  • Khalid Satori
Conference paper
  • 112 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1076)

Abstract

This paper presents a hybrid approach for 3D object reconstruction from multiple images taken from different viewpoints. The proposed method allows to obtain a complete and automatic reconstruction from limited number of images. It begins with a sparse 3D reconstruction based on camera self-calibration and interest point matching between images. The integration of sparse approach allows us to automatically estimate the projection matrices without using a turn-table (controlled environment) often used in the Shape from Silhouette approach. In addition, it offers the possibility of an accurate estimation of the initial bounding box of the object. This bounding box is discretized into voxels afterward. Then, the reconstruction process consists in using the image Silhouettes and the photo-consistency test to finally have a volumetric textured model that can be transformed into surface model by applying the marching cube algorithm. The experiments on real data are performed to validate the proposed approach; the results indicate that our method can achieve a very satisfactory reconstruction quality.

Keywords

Sparse 3D reconstruction Self-calibration Shape from Silhouettes Bounding box Photo-consistency 

References

  1. 1.
    Da, F., Sui, Y.: 3D reconstruction of human face based on an improved seeds-growing algorithm. Mach. Vis. Appl. 22, 879–887 (2011)CrossRefGoogle Scholar
  2. 2.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)CrossRefGoogle Scholar
  3. 3.
    El Hazzat, S., Merras, M., El Akkad, N., et al.: Enhancement of sparse 3D reconstruction using a modified match propagation based on particle swarm optimization. Multimed. Tools Appl. (2018).  https://doi.org/10.1007/s11042-018-6828-1CrossRefGoogle Scholar
  4. 4.
    Merras, M., Saaidi, A., El Akkad, N., et al.: Multi-view 3D reconstruction and modeling of the unknown 3D scenes using genetic algorithms. Soft Comput. 22, 6271 (2018).  https://doi.org/10.1007/s00500-017-2966-z
  5. 5.
    El Hazzat, S., Merras, M., El Akkad, N., et al.: 3D reconstruction system based on incremental structure from motion using a camera with varying parameters. Visual Comput. 34(10), 1443–1460 (2018)CrossRefGoogle Scholar
  6. 6.
    Merras, M., El Hazzat, S., Saaidi, A., et al.: 3D face reconstruction using images from cameras with varying parameters. Int. J. Autom. Comput. 14, 661 (2017).  https://doi.org/10.1007/s11633-016-0999-xCrossRefGoogle Scholar
  7. 7.
    El Hazzat, S., Saaidi, A., Karam, A., Satori, K.: Incremental multi-view 3D reconstruction starting from two images taken by a stereo pair of cameras. 3D Res. 6(1), 1–18 (2015)Google Scholar
  8. 8.
    Vogiatzis, G., Hernández, C., Torr, P.H.S., Cipolla, R.: Multi-view stereo via volumetric graph-cuts and occlusion robust photo-consistency. IEEE Trans. Pattern Anal. Mach. Intell. 29(12) (2007)Google Scholar
  9. 9.
    El Hazzat, S., Saaidi, A., Satori, K.: Structure from motion for 3D object reconstruction based on local and global bundle adjustment. In: 2015 Third World Conference on Complex Systems (WCCS), pp. 1–6 (2015)Google Scholar
  10. 10.
    Wang, G., Wu, J.: Perspective 3-D Euclidean reconstruction with varying camera parameters. IEEE Trans. Circuits Syst. Video Technol. 19, 1793–1803 (2009)CrossRefGoogle Scholar
  11. 11.
    Del Bue, A.: A factorization approach to structure from motion with shape priors. In: Proceedings CVPR (2008)Google Scholar
  12. 12.
    Laurentini, A.: The visual hull concept for Silhouette based image understanding. IEEE PAMI 16(2), 150–162 (1994)CrossRefGoogle Scholar
  13. 13.
    Mulayim, A.Y., Yilmaz, U., Atalay, V.: Silhouette-based 3-D model reconstruction from multiple images. IEEE Trans. Syst. Man Cybern. B Cybern. 33(4), 582–591 (2003)Google Scholar
  14. 14.
    Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Int. J. Comput. Vis. 38(3), 199–218 (2000)CrossRefGoogle Scholar
  15. 15.
    Montenegro, A.A., Carvalho, P.C.P., Gattass, M., Velho, L.: Adaptive space carving. In: 3DPVT 2004, 6–9 Sept 2004, GreeceGoogle Scholar
  16. 16.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  17. 17.
    Di Stefano, L., Mattoccia, S., Tombari, F.: ZNCC-based template matching using bounded partial correlation. Pattern Recogn. Lett. 26, 2129–2134 (2005)CrossRefGoogle Scholar
  18. 18.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  19. 19.
    El Akkad, N., Merras, M., Saaidi, A., Satori, K.: Camera self-calibration with varying intrinsic parameters by an unknown three-dimensional scene. Visual Comput. 30(5), 519–530 (2014)CrossRefGoogle Scholar
  20. 20.
    El Akkad, N., Merras, M., Saaidi, A., Satori, K.: Camera self-calibration with varying parameters from two views. WSEAS Trans. Inf. Sci. Appl. 10(11), 356 (2013)Google Scholar
  21. 21.
    Merras, M., et al.: Camera self-calibration with varying parameters by an unknown three dimensional scene using the improved genetic algorithm. 3D Res. 6(1), 1–14 (2015)Google Scholar
  22. 22.
    Merras, M., El Akkad, N., Saaidi, A., et al.: Camera calibration with varying parameters based on improved genetic algorithm. WSEAS Trans. Comput. 13, 129–137 (2014)Google Scholar
  23. 23.
    El Akkad, N., Merras, M., Saaidi, A., Satori, K.: Robust method for self-calibration of cameras having the varying intrinsic parameters. J. Theoret. Appl. Inf. Technol. 50(1) (2013)Google Scholar
  24. 24.
    El Akkad, N., Saaidi, A., Satori, K.: Self-calibration based on a circle of the cameras having the varying intrinsic parameters. ICMCS, 161–166 (2012)Google Scholar
  25. 25.
    Lee, W., Woo, W., Boyer, E.: Silhouette segmentation in multiple views. IEEE TPAMI 33(7), 1429–1441 (2011)CrossRefGoogle Scholar
  26. 26.
    Zeng, G., Quan, L.: Silhouette extraction from multiple images of an unknown background. In: Proceedings of ACCV, pp. 628–633 (2004)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Soulaiman El Hazzat
    • 1
  • Mostafa Merras
    • 1
    • 2
  • Nabil El Akkad
    • 1
  • Abderrahim Saaidi
    • 1
    • 3
  • Khalid Satori
    • 1
  1. 1.LIIAN, Department of Computer Science, Faculty of Sciences Dhar-MahrazSidi Mohamed Ben Abdellah UniversityFesMorocco
  2. 2.Department of Computer Science, High School of TechnologyMoulay Ismaïl UniversityMeknesMorocco
  3. 3.LSI, Department of Mathematics, Physics and Informatics, Polydisciplinary Faculty of TazaSidi Mohamed Ben Abdellah UniversityTazaMorocco

Personalised recommendations