Advertisement

State of the Art of Deep Learning Applications in Sentiment Analysis: Psychological Behavior Prediction

  • Naji MaryameEmail author
  • Daoudi Najima
  • Rahimi Hasnae
  • Ajhoun Rachida
Conference paper
  • 113 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1076)

Abstract

With the explosion of web 2.0, we are witnessing a sharp increase in Internet users such as a vertiginous evolution of social media. These media constitute a source of rich and varied information for researchers in sentiment analyses. This paper describes a tool for sifting through and synthesizing reviews by identifying the main deep learning techniques applied for sentiment analysis especially when it comes to psychological behavior prediction.

Keywords

Sentiment analysis Deep learning Psychological behavior Depression prediction 

References

  1. 1.
    Wan, Y., Gao, Q:. An ensemble sentiment classification system of twitter data for airline services analysis. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), IEEE, pp. 1318–1325 (2015)Google Scholar
  2. 2.
    Liu, B.: Sentiment analysis and opinion mining. Synthesis Lectures on Human Language Technologies, vol. 5, No. 1, pp. 1–167 (2012)Google Scholar
  3. 3.
    Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Foundations and Trends® in Information Retrieval, vol. 2, No. 1–2, pp. 1–135 (2008)Google Scholar
  4. 4.
    Bhadane, C., Dalal, H., Doshi, H.: Sentiment analysis: measuring opinions. Proc. Comput. Sci. 45, 808–814 (2015)Google Scholar
  5. 5.
    Chen, T., Xu, R., He, Y., et al.: Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Exp. Syst. Appl. 72, 221–230 (2017)Google Scholar
  6. 6.
    Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc (2010)Google Scholar
  7. 7.
    Maryame, N.A.J.I., Najima, D., Rachida, A.: Spatio-temporal context for improving sentiment analysis accuracy. In: 2018 6th International Conference on Multimedia Computing and Systems (ICMCS), IEEE, pp. 1–6 (2018)Google Scholar
  8. 8.
    Tang, D., Qin, B., Feng, X., Liu, T.: Effective LSTMs for target-dependent sentiment classification. In: Proceedings of the International Conference on Computational Linguistics (COLING 2016) (2016)Google Scholar
  9. 9.
    Li, N., Wu, D.D.: Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decis. Support Syst. 48(2), pp. 354–368 (2010)Google Scholar
  10. 10.
    Medhat, W., Hassan, A., Korashy, H.: Sentiment analysis algorithms and applications: a survey. Ain Shams Eng. J. 5(4), 1093–1113 (2014)Google Scholar
  11. 11.
    Katz, G., Ofek, N., Shapira, B:. ConSent: context-based sentiment analysis. Knowl.-Based Syst. 84, 162–178 (2015)Google Scholar
  12. 12.
    Cambria, E., Poria, S., Gelbukh, A.: Sentiment analysis is a big suitcase. IEEE Intell. Syst. 32(6), 74–80 (2017)Google Scholar
  13. 13.
    Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)Google Scholar
  14. 14.
    Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. 8(4), e1253 (2018)Google Scholar
  15. 15.
    Araque, O., Corcuera-Platas, I., Sanchez-Rada, J.F., et al.: Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Exp. Syst. Appl. 77, 236–246 (2017)Google Scholar
  16. 16.
    Chatterjee, A., Gupta, U., Chinnakotla, M.K., et al.: Understanding emotions in text using deep learning and big data. Comput. Hum. Behav. 93, 309–317 (2019)Google Scholar
  17. 17.
    Tang, D., Zhang, M.: Deep learning in sentiment analysis. In: Deep Learning in Natural Language Processing. Springer, Singapore, pp. 219–253 (2018)Google Scholar
  18. 18.
    Tang D., Qin B., Liu T.: Document modelling with gated recurrent neural network for sentiment classification. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2015) (2015)Google Scholar
  19. 19.
    Rosenthal, S., Farra, N., Nakov, P.: SemEval-2017 task4: Sentiment analysis in twitter. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 502–518Google Scholar
  20. 20.
    Chen, H., Sun, M., Tu, C., Lin, Y., Liu, Z.: Neural sentiment classification with user and product attention. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2016), (2016)Google Scholar
  21. 21.
    Denil, M., Demiraj, A., Kalchbrenner, N., Blunsom, P., de Freitas, N.: Modelling, visualizing and summarizing documents with a single convolutional neural network (2014)Google Scholar
  22. 22.
    Irsoy, O., Cardie, C.: Deep recursive neural networks for compositionality in language. In: Advances in Neural Information Processing Systems, pp. 2096–2104 (2014)Google Scholar
  23. 23.
    Xiong, S., Zhang, Y., Ji, D., Lou, Y.: Distance metric learning for aspect phrase grouping. In: Proceedings of COLING, pp. 2492–2502 (2016)Google Scholar
  24. 24.
    Cambria, E., Poria, S., Gelbukh, A., et al.: Sentiment analysis is a big suitcase. IEEE Intell. Syst. 32(6), 74–80 (2017)Google Scholar
  25. 25.
    Al-Smadi, M., Qawasmeh, O., Al-Ayyoub, M., et al: Deep recurrent neural network versus support vector machine for aspect-based sentiment analysis of Arabic hotels’ reviews. J. Comput. Sci. 27, 386–393 (2018)Google Scholar
  26. 26.
    Alharbi, A.S.M., et al.: Twitter sentiment analysis with a deep neural network: an enhanced approach using user behavioral information. Cognit. Syst. Res. (2018)Google Scholar
  27. 27.
    Paredes-Valverde, M.A., Colomo-Palacios, R., Salas-Zárate., M.D.P., et al.: Sentiment analysis in Spanish for improvement of products and services: a deep learning approach. Sci. Progr. 2017, (2017)Google Scholar
  28. 28.
    Acharya, U.R., Oh, S., Hagiwara, Y., et al.: Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Progr. Biomed., 161, 103–113 (2018)Google Scholar
  29. 29.
    Rosenthal, S., Farra, N., Nakov, P., SemEval-2017 task 4: Sentiment analysis in Twitter. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 502–518 (2017)Google Scholar
  30. 30.
    El Ouilani, Z.: 16 Oct 2018. Santé Mentale: Un Marocain Sur Quatre Est Dépressif. On the BLOG 360. Consulté le 01 Mar 2019. http://fr.le360.ma/societe/sante-mentale-un-marocain-sur-quatre-est-depressif-176610
  31. 31.
    Guenne, L.: 16 Oct 2018. Près d’un français sur dix victime de dépression en 2017. On website France Inter. Consulted the 25 Feb 2019. https://www.franceinter.fr/societe/pres-d-un-francais-sur-dix-victime-de-depression-en-2017
  32. 32.
    Sau, A., Bhakta, I.: Screening of anxiety and depression among the seafarers using machine learning technology. Informatics in Medicine Unlocked (2018)Google Scholar
  33. 33.
    Hatton, C.M., Paton, L.W.: Mcmillan, D., et al.: Predicting persistent depressive symptoms in older adults: a machine learning approach to personalised mental healthcare. J. Affect. Disord. 246, 857–860 (2019)Google Scholar
  34. 34.
    Repport, 10 May 2018. Dépression majeure: impact sur la santé en général. On the website The Heath of America BCBS. Consulted the 01 May 2019. https://www.bcbs.com/the-health-of-america/reports/major-depression-the-impact-overall-health

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Naji Maryame
    • 1
    Email author
  • Daoudi Najima
    • 1
    • 2
  • Rahimi Hasnae
    • 2
  • Ajhoun Rachida
    • 1
  1. 1.Smart System Laboratory (SSL)ENSIASRabatMorocco
  2. 2.LyricaESIRabatMorocco

Personalised recommendations