Interactive Voice Application-Based Amazigh Speech Recognition

  • Mohamed HamidiEmail author
  • Hassan Satori
  • Ouissam Zealouk
  • Khalid Satori
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1076)


This paper aims to build an interactive speaker-independent automatic Amazigh speech recognition system. The proposed system offers a methodology to extract data remotely from a distance database using the combined interactive voice response (IVR) and automatic speech recognition (ASR) technologies. We describe our experience to design an interactive speech system based on hidden Markov models (HMMs), Gaussian mixture models (GMMs) and Mel frequency spectral coefficients (MFCCs) based on ten first Amazigh digits and six Amazigh words. The best-obtained performance is 89.64% by using 3 HMMs and 16 GMMs.


IVR VOIP Asterisk Database server Amazigh speech recognition 


  1. 1.
    Asterisk IVR. Accessed Jan 2015
  2. 2.
    Shah, K., Ghrera, S.P., Thaker, A.: A novel approach for security issues in VoIP networks in virtualization with IVR. arXiv preprint arXiv:1206.1748 (2012)
  3. 3.
    Anwar, Z., Yurcik, W., Johnson, R.E., Hafiz, M., Campbell, R.H.: Multiple design patterns for voice over IP (VoIP) security. In: 25th IEEE International Performance, Computing, and Communications Conference, IPCCC 2006, pp. 8-pp (2006, April)Google Scholar
  4. 4.
    Rafique, M.Z., Akbar, M.A., Farooq, M.: Evaluating DoS attacks against SIP-based VoIP systems. In: Global Telecommunications Conference, GLOBECOM 2009, pp. 1–6. IEEE (2009, November)Google Scholar
  5. 5.
    Basu, J., Bepari, M.S., Roy, R., Khan, S.: Real time challenges to handle the telephonic speech recognition system. In: Proceedings of the Fourth International Conference on Signal and Image Processing 2012 (ICSIP 2012), pp. 395–408. Springer, India (2013)Google Scholar
  6. 6.
    Aust, H., Oerder, M., Seide, F., Steinbiss, V.: The Philips automatic train timetable information system. Speech Commun. 17(3), 249–262 (1995)Google Scholar
  7. 7.
    Bhat, C., Mithun, B.S., Saxena, V., Kulkarni, V., Kopparapu, S.: Deploying usable speech enabled IVR systems for mass use. International Conference on Human Computer Interactions (ICHCI), pp. 1–5 (2013)Google Scholar
  8. 8.
    Satori, H., ElHaoussi, F.: Investigation Amazigh speech recognition using CMU tools. Int. J. Speech Technol. 17(3), 235–243 (2014)CrossRefGoogle Scholar
  9. 9.
    Hamidi, M., Satori, H., Satori, K.: Implementing a voice interface in VOIP network with IVR server using Amazigh digits. Int. J. Multi-disciplinary Sci. 2(2), 38–43 (2016)Google Scholar
  10. 10.
    Madsen, L., Van Meggelen, J., Bryant, R.: Asterisk: The Definitive Guide. O’Reilly Media, Inc., pp. 121–145, 737–745, 417–478 (2011)Google Scholar
  11. 11.
    Penton, J., Terzoli, A.: Asterisk: A converged TDM and packet-based communications system. In: Proceedings of SATNAC 2003-Next Generation Networks (2003)Google Scholar
  12. 12.
    Handley, M., Schulzrinne, H., Schooler, E., et al.: RFC 2543. SIP: Session Initiation Protocol (1999)Google Scholar
  13. 13.
    Oracle VM VirtualBox. Accessed Jan 2015
  14. 14.
    Huang, X., Acero, A., Hon, H.W., Foreword By-Reddy, R.: Spoken language processing: a guide to theory, algorithm, and system development. Prentice Hall PTR (2001)Google Scholar
  15. 15.
    Satori, H., Zealouk, O., Satori, K., ElHaoussi, F.: Voice comparison between smokers and non-smokers using HMM speech recognition system. Int. J. Speech Technol. 20(4), 771–777 (2017)CrossRefGoogle Scholar
  16. 16.
    Zealouk, O., Satori, H., Hamidi, M., Satori, K.: Speech recognition for Moroccan dialects: feature extraction and classification methods. J. Adv. Res. Dyn. Control Syst. 11(2), 1401–1408 (2019)Google Scholar
  17. 17.
    Hamidi, M., Satori, H., Zealouk, O., Satori, K.: Speech coding effect on Amazigh alphabet speech recognition performance. J. Adv. Res. Dyn. Control Syst. 11(2), 1392–1400 (2019)Google Scholar
  18. 18.
    Zealouk, O., Satori, H., Hamidi, M., Laaidi, N., Satori, K.: Vocal parameters analysis of smoker using Amazigh language. Int. J. Speech Technol. 21(1), 85–91 (2018)CrossRefGoogle Scholar
  19. 19.
    Zealouk, O., Satori, H., Hamidi, M., Satori, K.: Voice pathology assessment based on automatic speech recognition using Amazigh digits. In: Proceedings of the 2nd International Conference on Smart Digital Environment, pp. 100–105. ACM (2018)Google Scholar
  20. 20.
    Mohamed, H., Hassan, S., Ouissam, Z., Khalid, S., Naouar, L.: Interactive voice response server voice network administration using hidden Markov model speech recognition system. In: 2018 Second World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4- IEEE), pp. 16–21 (2018, October)Google Scholar
  21. 21.
    Boukous, A.: Société, langues et cultures au Maroc: Enjeux symboliques (No. 8). Faculté des lettres et des sciences humans-Rabat (1995)Google Scholar
  22. 22.
    Beal, M.J., Ghahramani, Z., Rasmussen, C.E.: The infinite hidden Markov model. In: Advances in Neural Information Processing Systems, pp. 577–584 (2002)Google Scholar
  23. 23.
    Shanmugham, S., Burnett, D.: Media Resource Control Protocol Version 2 (MRCPv2) (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mohamed Hamidi
    • 1
    Email author
  • Hassan Satori
    • 1
  • Ouissam Zealouk
    • 1
  • Khalid Satori
    • 1
  1. 1.LIIAN Laboratory, FSDM, USMBAFezMorocco

Personalised recommendations