Optimized Type-2 Fuzzy Logic PSS Combined with H∞ Tracking Control for the Multi-machine Power System

  • Khaddouj Ben MezianeEmail author
  • Ismail Boumhidi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1076)


In this paper, an optimized type-2 fuzzy logic based on power system stabilizer combined with the optimal H∞ tracking control has been developed to design intelligent controllers for improving and enhancing the performance of stability for the multi-machine power system. The type-2 fuzzy logic based on interval value sets is capable for modeling the uncertainty and to overcome the drawbacks of the conventional power system stabilizer. The scaling factors of the type-2 fuzzy logic are optimized with the particle swarm optimization algorithm to obtain a robust controller. The optimal H∞ tracking control guarantees the convergence of the errors to the neighborhood of zero. The simulation results show the damping of the oscillations of the angle and angular speed with reduced overshoots and quick settling time.


Multi-machine power system Interval type-2 fuzzy logic Particle swarm optimization Power system stabilizer H∞ tracking control 


  1. 1.
    Eslam, M., Shareef, H., Taha, M.R., Khajehzadeh, M.: Adaptive particle swarm optimization for simultaneous design of UPFC damping controllers. Electric. Power Energy Syst. 57, 116–128 (2014)CrossRefGoogle Scholar
  2. 2.
    Robandi, I., Kharisma, B.: Design of interval type-2 fuzzy logic based power system stabilizer. Int. J. Electr. Electron. Eng. 3, 593–600 (2009)Google Scholar
  3. 3.
    Miccio, M., Cosenza, B.: Control of a distillation column by type-2 and type-1 fuzzy logic PID controllers. J. Process. Control 24, 475–484 (2014)CrossRefGoogle Scholar
  4. 4.
    Mendel, J.M.: Uncertainty Rule Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper-Addle River (2001)zbMATHGoogle Scholar
  5. 5.
    Mendel, J.M.: Uncertainty, fuzzy logic, and signal processing. Sign. Process. 80, 913–933 (2000)CrossRefGoogle Scholar
  6. 6.
    Liang, Q.L., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)CrossRefGoogle Scholar
  7. 7.
    Maldonado, Y., Castillo, O., Melin, P.: Particle swarm optimization of interval type-2 fuzzy systems for FPGA applications. Appl. Soft Comput. 13, 496–508 (2013)CrossRefGoogle Scholar
  8. 8.
    Saoudi, K., Harmas, M.N.: Enhanced design of an indirect adaptive fuzzy sliding mode power system stabilizer for multi-machine power systems. Electr. Power Energy Syst. 54, 425–431 (2014)CrossRefGoogle Scholar
  9. 9.
    Chen, B.S., Lee, C.H., Chang, Y.C.: H∞ tracking design of uncertain nonlinear SISO systems: adaptative fuzzy approach. IEEE Trans. Fuzzy Syst. 4, 32–43 (1996)CrossRefGoogle Scholar
  10. 10.
    Wenlei, L., Peter, X.L.: Adaptive tracking control of an MEMS gyroscope with H-infinity performance. J. Control Theory Appl. 9, 237–243 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mendel, J.M., John, R.I., Liu, F.L.: Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst. 14(6), 808–821 (2006)CrossRefGoogle Scholar
  12. 12.
    Castillo, O., Martinez, A.I., Martinez, A.C.: Evolutionary computing for topology optimization of type-2 fuzzy systems. Adv. Soft Comput. 41, 63–75 (2007)CrossRefGoogle Scholar
  13. 13.
    Yesil, E.: Interval type-2 fuzzy PID load frequency controller using big bang-big crunch optimization. Appl. Soft Comput. 15, 100–112 (2014)CrossRefGoogle Scholar
  14. 14.
    Khaddouj, B.M., Ismail, B.: An interval type-2 fuzzy logic PSS with the optimal H∞ tracking control for multi-machine power system. Intell. Syst. Comput. Vision (ISCV) IEEE (2015)
  15. 15.
    Gaing, Z.L.: A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy Convers. 19, 384–391 (2004)CrossRefGoogle Scholar
  16. 16.
    Liang, R.H., Tsai, S.R., Chen, Y.T., Tseng, W.T.: Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr. Power Syst. Res. 81, 1466–1474 (2011)CrossRefGoogle Scholar
  17. 17.
    Zineb, L., Khaddouj, B.M., Ismail, B.: Sliding mode controller based on type-2 fuzzy logic PID for a variable speed wind turbine. Int. J. Syst. Assur. Eng. Manag. 1–9 (2019).
  18. 18.
    Castillo, O., Melin, P.: Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf. Sci. 205, 1–19 (2012)CrossRefGoogle Scholar
  19. 19.
    Sanaye-Pasand, M., Malik, O.P.: A fuzzy logic based PSS using a standardized rule table. Electr. Mach. Power Syst. 27, 295–310 (1999)CrossRefGoogle Scholar
  20. 20.
    Braae, M., Rutherford, D.A.: Selection of parameters for a fuzzy logic controller. Fuzzy Sets Syst. 2, 185–199 (1979)CrossRefGoogle Scholar
  21. 21.
    Sambariya, D.K., Prasad, R.: Evaluation of interval type-2 fuzzy membership function and robust design of power system stabilizer for SMIB power system. Sylwan Journal 158, 289–307 (2014)Google Scholar
  22. 22.
    Colbia-Vegaa, A., Leon-Morales, J., Fridman, L., Salas-Pena, O., Mata-Jimenez, M.T.: Robust excitation control design using sliding-mode technique for multimachine power systems. Electr. Power Syst. Res. 78, 1627–1634 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of EngineeringHigher Institute of Engineering and Business (ISGA)FezMorocco
  2. 2.Department of Physics, LESSI Laboratory, Faculty of SciencesUniversity Sidi Mohamed Ben AbdellahFezMorocco

Personalised recommendations