Analog Active Filter Component Selection Using Genetic Algorithm

  • Asmae El BeqalEmail author
  • Bachir Benhala
  • Izeddine Zorkani
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1076)


In this paper, we highlight the optimal design of an active fourth-order band-pass filter for radio frequency identification (RFID) system reader to reject all signals outside the band (10–20) kHz and to amplify the low antenna signal with a center frequency of 15 kHz. The filter is designed to have a Butterworth response, and the topology that will be used to implement this filter is Sallen–Key. The values of the passive components are selected from manufactured series; thus, it is very exhaustive to search on all possible combinations of values from those series for an optimized design. The metaheuristics have proved a capacity to deal with such problem effectively. In this work, the metaheuristic genetic algorithm (GA) is applied for the optimal sizing of the fourth-order band-pass filter. SPICE simulations are used to validate the obtained results/performance.


Metaheuristic Optimization Genetic algorithm Fourth-order band-pass filter Sallen–Key topology 


  1. 1.
    Abdul, H.A.Z.A.: Design and simulation of 4th order active bandpass filter using multiple feedback and Sallen key topologies. J. Babylon Univ. Eng. Sci. 22(2) (2014)Google Scholar
  2. 2.
    Myo, Z.M.M., Aung, Z.M., Naing, Z.M.: Design and implementation of active band-pass filter for low frequency RFID (radio frequency identification) system. In: Proceedings of the International Multi Conference of Engineers and Computer Scientists Hong Kong, vol. 1 (2009)Google Scholar
  3. 3.
    Dreo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization: Methods and Case Studies. Springer, New York (2006)Google Scholar
  4. 4.
    Benhala, B., Bouattane, O.: GA and ACO techniques for the analog circuits design optimization. J. Theor. Appl. Inf. Technol. (JATIT) 64(2), 413–419 (2014)Google Scholar
  5. 5.
    Glover, F.: Tabu search-part I. ORSA J. Comput. 1(3), 190–206 (1989)CrossRefGoogle Scholar
  6. 6.
    Chan, F.T.S., Tiwari, M.K.: Swarm Intelligence: focus on ant and particle swarm optimization. I-Tech Education and Publishing (2007)Google Scholar
  7. 7.
    Benhala, B.: An improved aco algorithm for the analog circuits design optimization. Int. J. Circuits, Syst. Signal Process. 10, 128–133 (2016). ISSN: 1998-4464Google Scholar
  8. 8.
    Kritele, L., Benhala, B., Zorkani, I.: Ant colony optimization for optimal low-pass state variable filter sizing. Int. J. Electr. Comput. Eng. (IJECE) 8(1), 227–235 (2018)CrossRefGoogle Scholar
  9. 9.
    Kritele, L., Benhala, B., Zorkani, I.: Optimal digital IIR filter design using ant colony optimization. In: IEEE 4th International Conference on Optimization and Applications (ICOA’18), pp. 1–5. Mohammedia, Morocco (2018)Google Scholar
  10. 10.
    Bouyghf, H., Benhala, B., Raihani, A.: Optimization of 60-GHZ down-converting CMOS dual-gate mixer using artificial bee colony algorithm. J. Theoretical Appl. Inf. Technol. (JATIT) 95(4), 890–902 (2017)Google Scholar
  11. 11.
    Bouyghf, H., Benhala, B., Raihani, A.: Optimal design of RF CMOS circuits by means of an artificial bee colony technique. In: Benhala, B., Pereira, P., Sallem, A. (eds.) Chapter 11, Book: Focus on Swarm Intelligence Research and Applications, NOVA Science Publishers, pp. 221–246 (2017)Google Scholar
  12. 12.
    Haupt, R.L., Haupt, S.E.: Practical GeneticAlgorithms. Wiley (2004). ISBN 0-471-45565-2Google Scholar
  13. 13.
    Mitchell, M.: Genetic algorithms: an overview. Complexity 1(1), 31–39 (1995)CrossRefGoogle Scholar
  14. 14.
    Silva, V.G., Tavakoli, M., Marques, L.: Optimization of a three degrees of freedom DELTA Manipulator for well-conditioned workspace with a floating point genetic algorithm. Int. J. Nat. Comput. Res. (IJNCR) 4(4), 1–14 (2014)CrossRefGoogle Scholar
  15. 15.
    Nadimpalli, V.L.V., Wankar, R., Chillarige, R.R.: Innovative genetic algorithmic approach to select potential patches enclosing real and complex zeros of nonlinear equation. Int. J. Nat. Comput. Res. (IJNCR) 6(2), 18–37 (2017)CrossRefGoogle Scholar
  16. 16.
    Taroco, C.G., Carrano, E.G., Neto, O.M.: Robust design of power distribution systems using an enhanced multi-objective genetic algorithm. In: Nature-Inspired Computing Design, Development, and Applications, pp. 179–200. IGI Global (2012)Google Scholar
  17. 17.
    Wijaya, S., Uchimura, K., Koutaki, G.: Traffic light signal parameters optimization using modification of multielement genetic algorithm. Int. J. Electr. Comput. Eng. (IJECE) 8(1), 246–253 (2018)CrossRefGoogle Scholar
  18. 18.
    Mancini, R.: Op Amps for Everyone Design Reference. 2nd ed., Elsevier (2003)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Asmae El Beqal
    • 1
    Email author
  • Bachir Benhala
    • 2
  • Izeddine Zorkani
    • 1
  1. 1.Faculty of Sciences Dhar el MahrazUniversity of Sidi Mohamed Ben AbdellahFezMorocco
  2. 2.Faculty of SciencesUniversity of Moulay IsmailMeknesMorocco

Personalised recommendations