Principles of Laser Heat-Mode Lithography

  • Jingsong WeiEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 291)


Photolithography is actually the interaction of the light with photoresist. It is well known that light is not only information carrier, but also energy carrier. The lithography transfers both information and energy. On one hand, the light can transfer information into photoresists to form pattern structures based on the function of information carrier of light; on the other hand, the feature size of pattern structures can be reduced based on the function of energy carrier of light.


  1. 1.
    J. W. Thackeray, Chemically amplified resists and acid amplifiers, in Frontiers of Nanoscience A, ed. by R. R. Lawson (Elsevier, 2016), pp. 211–222Google Scholar
  2. 2.
    S. Hong, T. Nishibe, T. Okayasu, K. Takahashi, Y. Takano, W. Kang, H. Tanaka, Acid diffusion characteristics of RELACS coating for 193 nm lithography. Proc. SPIE 5376, 285–293 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    L. Li, X. Liu, S. Pal, S. Wang, C. K. Ober, E. P. Giannelis, Extreme ultraviolet resist materials for sub-7 nm patterning. Chem. Soc. Rev. 46, 4855–4866 (2017)CrossRefGoogle Scholar
  4. 4.
    T. Nagai, H. Nakagawa, T. Naruoka, S. Tagawa, A. Oshima, S. Nagahara, G. Shiraishi, K. Yoshihara, Y. Terashita, Y. Minekawa, E. Buitrago, Y. Ekinci, O. Yildirim, M. Meeuwissen, R. Hoefnagels, G. Rispens, C. Verspaget, R. Maas, Novel high sensitivity EUV photoresist for sub-7 nm node. Proc. SPIE 10143, 101430X (2016)Google Scholar
  5. 5.
    N. P. Hacker, K. M. Welsh, Photochemistry of triphenylsulfonium salts in poly[4-[(tert-butoxycarbonyl)oxy]styrene]: evidence for a dual photoinitiation process. Macromolecules 24, 2137–2139 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    S. Kang, V. M. Prabhu, W.-L. Wu, E. K. Lin, K.-W. Choi, M. Chandhok, T. R. Younkin, W. Yueh, Characterization of the photoacid diffusion length. Proc. SPIE 7273, 72733U (2009)CrossRefGoogle Scholar
  7. 7.
    H. Okamura, K. Miyama, A. Matsumoto, H. Wakayama, M. Nakajima, Acid diffusion at ArF resist/Si-hardmask interface. J. Adhesion Soc. Jpn. 51, 332–335 (2015)CrossRefGoogle Scholar
  8. 8.
    C. Deng, Y. Geng, Y. Wu, Selective wet etching of Ge2Sb2Te5 phase-change thin films in thermal lithography with tetramethylammonium. Appl. Phys. A 104, 1091–1097 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    H. Li, Y. Geng, Y. Wu, Selective etching characteristics of the AgInSbTe phase-change film in laser thermal lithography. Appl. Phys. A 107, 221–225 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    H. R. Yoon, W. Jo, E. Cho, S. Yoon, M. Kim, Microstructure and optical properties of phase-change Ge–Sb–Te nanoparticles grown by pulsed-laser ablation. J. Non-Crystal. Solids 352, 3757–3761 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    R. Zhao, T. C. Chong, L. P. Shi, P. K. Tan, H. Meng, X. Hu, K. B. Li, A. Y. Du, Study of the structural transformation of Ge2Sb2Te5 induced by current pulse in phase change memory. MRS Proc. 803, HH1.5 (2003)Google Scholar
  12. 12.
    I. Eiichi, K. Yuko, T. Morio, A. Shinya, O. Eiji, TeOx-based film for heat-mode inorganic photoresist mastering. Jpn. J. Appl. Phys. 44, 3574 (2005)CrossRefGoogle Scholar
  13. 13.
    S. Raoux, F. Xiong, M. Wuttig, E. Pop, Phase change materials and phase change memory. MRS Bull. 39, 703–710 (2014)CrossRefGoogle Scholar
  14. 14.
    H. J. Mamin, Thermal writing using a heated atomic force microscope tip. Appl. Phys. Lett. 69, 433–435 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    J. K. Chen, J. W. Lin, J. P. Chen, K. C. Chiu, Optimization of Ge–Sb–Sn–O films for thermal lithography of submicron structures. Jpn. J Appl. Phys. 51, 06FC03 (2012)CrossRefGoogle Scholar
  16. 16.
    K. Akira, A. Katsuhisa, T. Yoshihiro, N. Takashi, K. Shinichi, O. Kiyoshi, N. Kenzo, High-resolution blue-laser mastering using an inorganic photoresist. Jpn. J. Appl. Phys. 42, 769 (2003)CrossRefGoogle Scholar
  17. 17.
    K. Tanaka, T. Gotoh, K. Sugawara, Nano-scale phase changes in Ge-Sb-Te films with electrical scanning probe microscopes. J. Optoelectron. Adv. Mater. 6, 1133–1140 (2004)Google Scholar
  18. 18.
    M. Hiroshi, T. Nobuaki, H. Yoshitaka, S. Suguru, I. Noriyuki, T. Junnichi, Patterning of ZnS–SiO2 by laser irradiation and wet etching. Jpn. J. Appl. Phys. 45, 1410 (2006)CrossRefGoogle Scholar
  19. 19.
    K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    A. Dun, J. Wei, F. Gan, Laser direct writing pattern structures on AgInSbTe phase change thin film. Chin. Opt. Lett. 9, 082101 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    C. Yang, M. Hsu, S. Chang, J. Chen, T. Jeng, K. Chiu, Spin coatable inorganic resist for high density disk mastering process application. Jpn. J. Appl. Phys. 47, 6023 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    J. Li, L. Zheng, H. Xi, D. Liu, H. Zhang, Y. Tian, Y. Xie, X. Zhu, Q. Liu, A study on inorganic phase-change resist Ge2Sb2(1−x)Bi2xTe5 and its mechanism. Phys. Chem. Chem. Phys. 16, 22281–22286 (2014)CrossRefGoogle Scholar
  23. 23.
    H. Xi, Q. Liu, S. Guo, Phase change material Ge2Sb1.5Bi0.5Te5 possessed of both positive and negative photoresist characteristics. Mater. Lett. 80, 72–74 (2012)Google Scholar
  24. 24.
    A.V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga, T. Uruga, Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 3, 703 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    M. Krbal, A. V. Kolobov, P. Fons, J. Tominaga, S. R. Elliott, J. Hegedus, T. Uruga, Intrinsic complexity of the melt-quenched amorphous Ge2Sb2Te5 memory alloy. Phys. Rev. B 83, 054203 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    S. Kohara, K. Kato, S. Kimura, H. Tanaka, T. Usuki, K. Suzuya, H. Tanaka, Y. Moritomo, T. Matsunaga, N. Yamada, Y. Tanaka, H. Suematsu, M. Takata, Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states. Appl. Phys. Lett. 89, 201910 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina

Personalised recommendations