Advertisement

Nanopolysaccharides in Barrier Composites

  • Martin A. HubbeEmail author
  • Preeti Tyagi
  • Lokendra Pal
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 15)

Abstract

The purpose of a barrier layer or film in a packaging product is to slow down or essentially eliminate the progress of oxygen, water vapor, or other molecules, thereby extending the shelf life, safety, and maybe also the taste of products—especially in the case of foods. This chapter discusses progress in the preparation of barrier composite films that include nanopolysaccharides, such as nanochitin, nanostarch, and nanocellulose. The reviewed research shows that these eco-friendly components in the resulting films often can improve barrier properties. While nanocellulose has attracted more research attention, nanostarch particles can be prepared under less aggressive chemical conditions, and particles related to chitin might possibly be preferred when one of the goals is to achieve antimicrobial effects. Nanopolysaccharides are also likely to find future applications in barrier films containing montmorillonite clay (nanoclay) and in multi-layer barrier film systems.

Keywords

Nanocellulose Nanochitin Nanostarch Barrier composites Barrier mechanism 

References

  1. 1.
    Bharimalla AK, Deshmukh SP, Vigneshwaran N et al (2017) Nanocellulose-polymer composites for applications in food packaging: current status, future prospects and challenges. Polym-Plast Technol Eng 56:805–823CrossRefGoogle Scholar
  2. 2.
    Abdul Khalil HPS, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979CrossRefGoogle Scholar
  3. 3.
    Abdul Khalil HPS, Saurabh CK, Adnan AS et al (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr Polym 15:216–226Google Scholar
  4. 4.
    Khalil HPSA, Tye YY, Sourabh CK et al (2017) Biodegradable polymer films from seaweed polysaccharides: a review on cellulose as a reinforcement material. eXPRESS Polym Lett 11:244–265CrossRefGoogle Scholar
  5. 5.
    Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253CrossRefGoogle Scholar
  6. 6.
    Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Indust Crops Prod 97:664–671CrossRefGoogle Scholar
  7. 7.
    Berglund LA, Peijs T (2010) Cellulose biocomposites—From bulk moldings to nanostructured systems. MRS Bull 35:201–207CrossRefGoogle Scholar
  8. 8.
    Castro-Rosas J, Cruz-Galvez AM, Gomez-Aldapa CA et al (2016) Biopolymer films and the effects of added lipids, nanoparticles and antimicrobials on their mechanical and barrier properties: a review. Intl J Food Sci Technol 51:1967–1978CrossRefGoogle Scholar
  9. 9.
    Chakrabarty A, Teramoto Y (2018) Review. Recent advances in nanocellulose composites with polymers: a guide for choosing partners and how to incorporate them. Polymers 10: article no 517CrossRefGoogle Scholar
  10. 10.
    Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15:4111–4128CrossRefGoogle Scholar
  11. 11.
    Dufresne A, Castano J (2017) Polysaccharide nanomaterial reinforced starch nanocomposites: a review. Starch-Starke 69: article no 1500307CrossRefGoogle Scholar
  12. 12.
    Feldman D (2013) Polymer nanocomposite barriers. J Macromol Sci Part A Pure Appl Chem 50:441–448CrossRefGoogle Scholar
  13. 13.
    Ferreira FV, Dufresne A, Pinheiro IF et al (2018) How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: a comprehensive review. Eur Polym J 108:274–285CrossRefGoogle Scholar
  14. 14.
    Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: advances in barrier layer technologies. Indust Crops Prod 95:574–582CrossRefGoogle Scholar
  15. 15.
    Freire CSR, Fernandes SCM, Silvestre AJD et al (2013) Novel cellulose-based composites based on nanofibrillated plant and bacterial cellulose: recent advances at the University of Aveiro—a review. Holzforschung 67:603–612CrossRefGoogle Scholar
  16. 16.
    Ilyas RA, Sapuan SM, Sanyang ML et al (2018) Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review. Current Anal Chem 14:203–225CrossRefGoogle Scholar
  17. 17.
    Kargarzadeh H, Mariano M, Huang J et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393CrossRefGoogle Scholar
  18. 18.
    Khan A, Huq T, Khan RA et al (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174CrossRefGoogle Scholar
  19. 19.
    Kumar N, Kaur P, Bhatia S (2017) Advances in bio-nanocomposite materials for food packaging: a review. Nutrition Food Sci 47:591–606Google Scholar
  20. 20.
    Mondal S (2018) Review on nanocellulose polymer nanocomposites. Polymer-Plastics Technol Eng 57:1377–1391CrossRefGoogle Scholar
  21. 21.
    Paunonen S (2013) Strength and barrier enhancements of cellophane and cellulose derivative films: a review. BioResources 8:3098–3121CrossRefGoogle Scholar
  22. 22.
    Paunonen S (2013) Strength and barrier enhancements of composites and packaging boards by nanocelluloses—a literature review. Nordic Pulp Paper Res J 28:165–181CrossRefGoogle Scholar
  23. 23.
    Perez-Pacheco E, Canto-Pinto JC, Moo-Huchin VM et al (2016) Thermoplastic starch (TPS)-cellulosic fibers composites: mechanical properties and water vapor barrier: a review. In: Poletto M (ed) Composites from renewable and sustainable materials. INTEACH, pp 85–105Google Scholar
  24. 24.
    Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM (2010) Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol 21(11):528–536CrossRefGoogle Scholar
  25. 25.
    Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRefGoogle Scholar
  26. 26.
    Stark NM (2016) Opportunities for cellulose nanomaterials in packaging films: a review and future trends. J Renewable Mater 4:313–326CrossRefGoogle Scholar
  27. 27.
    Vasile C (2018) Polymeric nanocomposites and nanocoatings for food packaging: A review. Materials 11: article no 1834CrossRefGoogle Scholar
  28. 28.
    Robertson GL (2013) Food packaging principles and practice, 3rd edn. CRC Press. Taylor & Francis, Boca Raton, p 703Google Scholar
  29. 29.
    Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:R43–R49CrossRefGoogle Scholar
  30. 30.
    Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24CrossRefGoogle Scholar
  31. 31.
    Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782CrossRefGoogle Scholar
  32. 32.
    Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. In: Chen NL, Man HC, Talib RA (eds) 2nd international conference on agricultural and food engineering (CAFE 2014)—new trends forward. Book series: agriculture and agricultural science procedia vol 2, pp 296–303CrossRefGoogle Scholar
  33. 33.
    Bledski AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  34. 34.
    Hubbe MA, Rojas OJ, Lucia LA et al (2008) Cellulosic nanocomposites. A review. BioResources 3:929–980Google Scholar
  35. 35.
    Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties, and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  36. 36.
    Lindstrom T, Aulin C (2014) Market and technical challenges and opportunities in the area of innovative new materials and composites based on nanocellulosics. Scand J Forest Res 29:345–351CrossRefGoogle Scholar
  37. 37.
    Cagri A, Ustunol Z, Ryser ET (2004) Antimicrobial edible films and coatings. J Food Protection 67:833–848CrossRefGoogle Scholar
  38. 38.
    Chivrac F, Pollet E, Avérous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng: R Reports 67:1–17CrossRefGoogle Scholar
  39. 39.
    Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652CrossRefGoogle Scholar
  40. 40.
    Mohanty F, Swain SK (2018) Bionanocomposites for food packaging applications. In: Oprea AE, Grumezescu AM (eds) Nanotechnology applications in food. flavor, stability, nutrition and safety. Elsevier BV, Amsterdam. (Ch 18)CrossRefGoogle Scholar
  41. 41.
    Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505CrossRefGoogle Scholar
  42. 42.
    Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137:360–374CrossRefGoogle Scholar
  43. 43.
    Porta R, Mariniello L, Di Pierro P et al (2011) Transglutaminase crosslinked pectin- and chitosan-based edible films: a review. Crit Rev Food Sci Nutrition 51:223–238, article no PII 934350148CrossRefGoogle Scholar
  44. 44.
    Hassan B, Chatha SAS, Hussain AI et al (2018) Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Intl J Biol Macromol 109:1095–1107CrossRefGoogle Scholar
  45. 45.
    Hubbe MA, Ferrer A, Tyagi P et al (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: a review. BioResources 12:2143–2233Google Scholar
  46. 46.
    Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Pack Technol Sci 16:149–158CrossRefGoogle Scholar
  47. 47.
    Li F, Mascheroni E, Piergiovanni L (2015) The potential of nanocellulose in the packaging field: a review. Packag Technol Sci 28:475–508CrossRefGoogle Scholar
  48. 48.
    Favier V, Chanzy H, Cavaille JY (1995) Polymer nanocomposites reinforced by cellulose whiskers. Macromol 28:6365–6367CrossRefGoogle Scholar
  49. 49.
    Abdollahi M, Alboofetileh M, Behrooz R et al (2013) Reducing water sensitivity of alginate bio-nanocomposite films using cellulose nanoparticles. Int J Biol Macromol 54:166–173CrossRefGoogle Scholar
  50. 50.
    Abdulkhani A, Hosseinzadeh J, Dadashi S et al (2015) A study of morphological, thermal, mechanical and barrier properties of PLA based biocomposites prepared with micro and nano sized cellulosic fibers. Cellulose Chem Technol 49(7–8):597–605Google Scholar
  51. 51.
    Chang PR, Jian RJ, Yu J et al (2010) Starch-based composites reinforced with novel chitin nanoparticles. Carbohyd Polym 80:420–425CrossRefGoogle Scholar
  52. 52.
    Chang PR, Jian RJ, Yu JG et al (2010) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120:736–740CrossRefGoogle Scholar
  53. 53.
    Chang PR, Jian RJ, Zheng PW et al (2010) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohyd Polym 79:301–305CrossRefGoogle Scholar
  54. 54.
    Corsello FA, Bolla PA, Anbinder PS et al (2017) Morphology and properties of neutralized chitosan-cellulose nanocrystals biocomposite films. Carbohydr Polym 156:452–459CrossRefGoogle Scholar
  55. 55.
    El Miri N, Abdelouandi K, Barakat A et al (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167CrossRefGoogle Scholar
  56. 56.
    Fernandes SCM, Freire CSR, Silvestre AJD et al (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81:394–401CrossRefGoogle Scholar
  57. 57.
    Heshmati V, Kamal MR, Favis BD (2018) Cellulose nanocrystal in poly(lactic acid)/polyamide11 blends: Preparation, morphology and co-continuity. Eur Polym J 98:11–20CrossRefGoogle Scholar
  58. 58.
    Hossain KMZ, Jasmani L, Ahmed I et al (2012) High cellulose nanowhisker content composites through cellosize bonding. Soft Matter 8:12099–12110CrossRefGoogle Scholar
  59. 59.
    Ji YL, Wang XM, Liang K (2014) Regulating the mechanical properties of poly(1,8-octanediol citrate) bioelastomer via loading of chitin nanocrystals. RSC Advan 4:41357–41363CrossRefGoogle Scholar
  60. 60.
    Khan A, Khan RA, Salmieri S et al (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608CrossRefGoogle Scholar
  61. 61.
    Kord B, Malekian B, Yousefi H et al (2016) Preparation and characterization of nanofibrillated cellulose/poly (vinyl alcohol) composite films. Maderas Cienc Tecnol 18:743–752Google Scholar
  62. 62.
    Kvien I, Oksman K (2007) Orientation of nanowhiskers in polyvinyl alcohol. Appl Phys A Mater Sci Process 87:641–643CrossRefGoogle Scholar
  63. 63.
    Lee SY, Mohan DJ, Kang IA et al (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polymers 10:77–82CrossRefGoogle Scholar
  64. 64.
    Li DF, Moriana R, Ek M (2016) From forest residues to hydrophobic nanocomposites with high oxygen-barrier properties. Nordic Pulp Paper Res J 31:261–269CrossRefGoogle Scholar
  65. 65.
    Ljungberg N, Bonini C, Bortolussi F et al (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: Effect of surface and dispersion characteristics. Biomacromol 6:2732–2739CrossRefGoogle Scholar
  66. 66.
    Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292CrossRefGoogle Scholar
  67. 67.
    Ma L, Wang LL, Wu LX et al (2014) Cellulosic nanocomposite membranes from hydroxypropyl cellulose reinforced by cellulose nanocrystals. Cellulose 21:4443–4454CrossRefGoogle Scholar
  68. 68.
    Pereda M, Amica G, Rácz I et al (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83CrossRefGoogle Scholar
  69. 69.
    Pereda M, Dufresne A, Aranguren ME et al (2014) Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydr Polym 101:1018–1026CrossRefGoogle Scholar
  70. 70.
    Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Composites Sci Technol 67(11–12):2535–2544CrossRefGoogle Scholar
  71. 71.
    Sanchez-Garcia MD, Hilliou L, Lagaron JM (2010) Morphology and water barrier properties of nanobiocomposites of k/i-hybrid carrageenan and cellulose nanowhiskers. J Agric Food Chem 58:12847–12857CrossRefGoogle Scholar
  72. 72.
    Sanchez-Garcia M, Lagaron J (2010) On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 17:987–1004CrossRefGoogle Scholar
  73. 73.
    Savadekar NR, Karande VS, Vigneshwaran N et al (2014) Preparation of cellulose nano-whiskers and its effect on performance properties of k-carrageenan. J Biomased Mater Bioenergy 8:618–626CrossRefGoogle Scholar
  74. 74.
    Savadekar NR, Karande VS, Vigneshwaran N et al (2012) Preparation of nanocellulose fibers and its application in kappa-carrageenan based film. Intl J Biol Macromol 51:1008–1013CrossRefGoogle Scholar
  75. 75.
    Savadekar NR, Karande VS, Vigneshwaran N et al (2015) Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch. Appl Nanosci 5:281–290CrossRefGoogle Scholar
  76. 76.
    Shankar S, Reddy JP, Rhim JW et al (2015) Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr Polym 117:468–475CrossRefGoogle Scholar
  77. 77.
    Soni B, Hassan E, Schilling MW et al (2016) Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Carbohydr Polym 151:779–789CrossRefGoogle Scholar
  78. 78.
    Sriupayo J, Supaphol P, Blackwell J et al (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydr Polym 62:130–136CrossRefGoogle Scholar
  79. 79.
    Sriupayo J, Supaphol P, Blackwell J et al (2005) Preparation and characterization of alpha-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment. Polymer 46:5637–5644CrossRefGoogle Scholar
  80. 80.
    Viguie J, Molina-Boisseau S, Dufresne A (2007) Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals. Macromol Biosci 7:1206–1216CrossRefGoogle Scholar
  81. 81.
    Zarina S, Ahmad I (2015) Biodegradable composite films based on κ-carrageenan reinforced by cellulose nanocrystal from kenaf fibers. BioResources 10:256–271Google Scholar
  82. 82.
    Alloin F, D’Aprea A, Dufresne A et al (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: Influence of processing: Extrusion and casting/evaporation. Cellulose 18:957–973CrossRefGoogle Scholar
  83. 83.
    Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630CrossRefGoogle Scholar
  84. 84.
    Charlon S, Follain N, Chappey C et al (2015) Improvement of barrier properties of bio-based polyester nanocomposite membranes by water-assisted extrusion. J Membrane Sci 496:185–198CrossRefGoogle Scholar
  85. 85.
    Dhar P, Gaur SS, Soundararajan N et al (2017) Reactive extrusion of polylactic acid/cellulose nanocrystal films for food packaging applications: Influence of filler type on thermomechanical, rheological, and barrier properties. Indust Eng Chem Res 56:4718–4735CrossRefGoogle Scholar
  86. 86.
    Karkhanis SS, Stark NM, Sabo RC et al (2018) Water vapor and oxygen barrier properties of extrusion-blown poly(lactic acid)/cellulose nanocrystals nanocomposite films. Compos Part A Appl Sci Manuf 114:204–211CrossRefGoogle Scholar
  87. 87.
    Lemahieu L, Bras J, Tiquet P et al (2011) Extrusion of nanocellulose-reinforced nanocomposites using the dispersed nano-objects protective encapsulation (DOPE) process. Macromol Mater Eng 296:984–991CrossRefGoogle Scholar
  88. 88.
    Lu P, Xiao HN, Zhang WW et al (2014) Reactive coating of soybean oil-based polymer on nanofibrillated cellulose film for water vapor barrier packaging. Carbohyd Polym 111:524–529CrossRefGoogle Scholar
  89. 89.
    Martinez-Sanz M, Lopez-Rubio A, Lagaron JM (2012) Optimization of the dispersion of unmodified bacterial cellulose nanowhiskers into polylactide via melt compounding to significantly enhance barrier and mechanical properties. Biomacromol 13:3887–3899CrossRefGoogle Scholar
  90. 90.
    Natterodt JC, Shirole A, Sapkota J et al (2018) Polymer nanocomposites with cellulose nanocrystals made by co-precipitation. J Appl Polym Sci 135(24), article no 445648CrossRefGoogle Scholar
  91. 91.
    Sapkota J, Natterodt JC, Shirole A et al (2017) Fabrication and properties of polyethylene/cellulose nanocrystal composites. Macromol Mater Eng 302: article no 1600300CrossRefGoogle Scholar
  92. 92.
    Nair SS, Kuo PY, Chen HY, Yan N (2017) Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite. Indust Crops Prod 100:208–217CrossRefGoogle Scholar
  93. 93.
    Kong XH, Wolodko J, Zhao LY et al (2018) The preparation and characterization of polyurethane reinforced with a low fraction of cellulose nanocrystals. Prog Organic Coatings 125:207–214CrossRefGoogle Scholar
  94. 94.
    Garcia de Rodriguez NLG, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261–270CrossRefGoogle Scholar
  95. 95.
    Chen C, Wei M, Chen J et al (2008) Simultaneous reinforcing and toughening: New nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer 49:1860–1870CrossRefGoogle Scholar
  96. 96.
    Mittal V (2011) Nanocomposites with biodegradable polymers. Synthesis, properties, and future perspectives. Oxford Scholarship Online, 1020Google Scholar
  97. 97.
    Li SCY, Sun YC, Guan Q et al (2016) Effects of chitin nanowhiskers on the thermal, barrier, mechanical, and rheological properties of polypropylene nanocomposites. RSC Advan 6:72086–72095CrossRefGoogle Scholar
  98. 98.
    Fotie G, Rampazzo R, Ortenzi MA et al (2017) The effect of moisture on cellulose nanocrystals intended as a high gas barrier coating on flexible packaging materials. Polymers 9: article no 415CrossRefGoogle Scholar
  99. 99.
    Majeed K, Hassan A, Abu Bakar A (2017) Barrier, biodegradation, and mechanical properties of (rice husk)/(montmorillonite) hybrid filler-filled low-density polyethylene nanocomposite films. J Vinyl Additive Technol I23:162–171CrossRefGoogle Scholar
  100. 100.
    Yuwawech K, Wootthikanokkhan J, Tanpichai S (2018) Transparency, moisture barrier property, and performance of the alternative solar cell encapsulants based on PU/PVDC blend reinforced with different types of cellulose nanocrystals. Mater Renew Sustain Energy 7: article no 21Google Scholar
  101. 101.
    Forsgren L, Sahlin-Sjovold K, Venkatesh A et al (2019) Composites with surface-grafted cellulose nanocrystals (CNC). J Mater Sci 54:3009–3022CrossRefGoogle Scholar
  102. 102.
    Medina E, Caro N, Abugoch L et al (2019) Chitosan thymol nanoparticles improve the antimicrobial effect and the water vapour barrier of chitosan-quinoa protein films. J Food Eng 240:191–198CrossRefGoogle Scholar
  103. 103.
    Barnes DKA, Galgani F, Thompson RC et al (2009) Accumulation and fragmentation of plastic debris in global environments. Phil Trans Royal Soc B - Biol Sci 364(1526):1985–1998CrossRefGoogle Scholar
  104. 104.
    Mrkic S, Galic K, Ivankovic M et al (2006) Gas transport and thermal characterization of mono- and di-polyethylene films used for food packaging. J Appl Polym Sci 99:1590–1599CrossRefGoogle Scholar
  105. 105.
    LeCorre D, Dufresne A, Rueff M et al (2014) All starch nanocomposite coating for barrier material. J Appl Polymer Sci 131: article no 39826Google Scholar
  106. 106.
    Xu XZ, Liu F, Jiang L et al (2013) Cellulose nanocrystals vs cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfac 5:2999–3009CrossRefGoogle Scholar
  107. 107.
    Yu HY, Zhang H, Song ML et al (2017) From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl Mater Interfaces 9:43920–43938CrossRefGoogle Scholar
  108. 108.
    Abdullah ZW, Dong Y (2018) Recent advances and perspectives on starch nanocomposites for packaging applications. J Mater Sci 53:15319–15339CrossRefGoogle Scholar
  109. 109.
    Bagheriasl D, Carreau PJ, Riedl B et al (2018) Enhanced properties of polylactide by incorporating cellulose nanocrystals. Polym Compos 39:2685–2694CrossRefGoogle Scholar
  110. 110.
    Chi K, Catchmark JM (2017) Enhanced dispersion and interface compatibilization of crystalline nanocellulose in polylactide by surfactant adsorption. Cellulose 24:4845–4860CrossRefGoogle Scholar
  111. 111.
    Espino-Perez E, Bras J, Almeida G et al (2018) Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites. Carbohydr Polym 183:267–277CrossRefGoogle Scholar
  112. 112.
    Espino-Perez E, Bras J, Ducruet V et al (2013) Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur Polym J 49:3144–3154CrossRefGoogle Scholar
  113. 113.
    Fortunati E, Peltzer M, Armentano I et al (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956CrossRefGoogle Scholar
  114. 114.
    Frone AN, Berlioz S, Chailan JF et al (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohyd Polym 91:377–384CrossRefGoogle Scholar
  115. 115.
    Frone AN, Berlioz S, Chailan JF et al (2011) Cellulose fiber-reinforced polylactic acid. Polym Compos 32:976–985CrossRefGoogle Scholar
  116. 116.
    Fukuzumi H, Saito T, Wata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10:162–165CrossRefGoogle Scholar
  117. 117.
    Iwataki A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106CrossRefGoogle Scholar
  118. 118.
    Martinez-Sanz M, Abdelwahab MA, Lopez-Rubio A et al (2013) Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: improved barrier and mechanical properties. Eur Polym J 49:2062–2072CrossRefGoogle Scholar
  119. 119.
    Pal AK, Katiyar V (2016) Nanoamphiphilic chitosan dispersed poly(lactic acid) bionanocomposite films with improved thermal, mechanical, and gas barrier properties. Biomacromol 17:2603–2618CrossRefGoogle Scholar
  120. 120.
    Satam CC, Irvin CW, Lang AW et al (2018) Spray-coated multilayer cellulose nanocrystal-chitin nanofiber films for barrier applications. ACS Sustain Chem Eng 6:10637–10644CrossRefGoogle Scholar
  121. 121.
    Song ZP, Xiao HN, Zhao Y (2014) Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr Polym 111:442–448CrossRefGoogle Scholar
  122. 122.
    Annamalai PK, Depan D (2015) Nano-cellulose reinforced chitosan nanocomposites for packaging and biomedical applications. In: Thakur VK, Kessler MR (eds) Green biorenewable biocomposites: from knowledge to industrial applications. CRC Press, Taylor and Francis, Boca Raton, pp 489–506CrossRefGoogle Scholar
  123. 123.
    Antoniou J, Liu F, Majeed H et al (2015) Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: a comparative study. Food Hydrocolloids 44:309–319CrossRefGoogle Scholar
  124. 124.
    Azeredo HMC, Miranda KWE, Rosa MF et al (2012) Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT-Food Sci Technol 46: 294–297CrossRefGoogle Scholar
  125. 125.
    Barud. HS, Souza JL, Santos DB et al (2011) Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes Carbohydr Polym 83: 1279–1284Google Scholar
  126. 126.
    Bilbao-Sainz CB, Bras J, Williams T (2011) HPMC reinforced with different cellulose nanoparticles. Carbohyd Polym 86:1549–1557CrossRefGoogle Scholar
  127. 127.
    Carvalho RA, Santos TA, de Azevedo VM et al (2018) Bio-nanocomposites for food packaging applications: effect of cellulose nanofibers on morphological, mechanical, optical and barrier properties. Polym Intl 67:386–392CrossRefGoogle Scholar
  128. 128.
    Chen Y, Cao X, Chang PR et al (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73:8–17CrossRefGoogle Scholar
  129. 129.
    Chi K, Catchmark JM (2018) Improved eco-friendly barrier materials based on crystalline nanocellulose/chitosan/carboxymethyl cellulose polyelectrolyte complexes. Food Hydrocolloids 80:195–205CrossRefGoogle Scholar
  130. 130.
    Deepa B, Abraham E, Pothan LA et al (2016) Biodegradable nanocomposite films based on sodium alginate and cellulose nanofibrils. Materials 9:1–11 article no 9010050CrossRefGoogle Scholar
  131. 131.
    Deng ZL, Jung J, Simonsen J et al (2017) Cellulose nanocrystal reinforced chitosan coatings for improving the storability of postharvest pears under both ambient and cold storages. J Food Sci 82:453–462CrossRefGoogle Scholar
  132. 132.
    Dhar P, Bhardwaj U, Kumar A et al (2015) Poly (3-hydroxybutyrate)/ cellulose nanocrystal films for food packaging applications: barrier and migration studies. Polym Eng Sci 55:2388–2395CrossRefGoogle Scholar
  133. 133.
    Fang DL, Deng ZL, Jung J et al (2018) Mushroom polysaccharides-incorporated cellulose nanofiber films with improved mechanical, moisture barrier, and antioxidant properties. J Appl Polymer Sci 135: article no 46166CrossRefGoogle Scholar
  134. 134.
    Gea S, Bilotti E, Reynolds CT, Soykeabkeaw N et al (2010) Bacterial cellulose-poly(vinyl alcohol) nanocomposites prepared by an in-situ process. Mater Lett 64:901–904CrossRefGoogle Scholar
  135. 135.
    George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 87:2031–2037CrossRefGoogle Scholar
  136. 136.
    Gicquel E, Martin C, Yanez JG et al (2017) Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties. J Mater Sci 52:3048–3061CrossRefGoogle Scholar
  137. 137.
    Grande CJ, Torres FG, Gomez CM et al (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615CrossRefGoogle Scholar
  138. 138.
    Grande CJ, Torres FG, Gomez CM et al (2009) Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng, C 29:1098–1104CrossRefGoogle Scholar
  139. 139.
    Huq T, Salmieri S, Khan A et al (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohyd Polym 90:1757–1763CrossRefGoogle Scholar
  140. 140.
    Johnson RK, Zink-Sharp A, Renneckar SH et al (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238CrossRefGoogle Scholar
  141. 141.
    Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345CrossRefGoogle Scholar
  142. 142.
    Li MC, Mei CT, Xu XW et al (2016) Cationic surface modification of cellulose nanocrystals: toward tailoring dispersion and interface in carboxymethyl cellulose films. Polymer 107:200–210CrossRefGoogle Scholar
  143. 143.
    Li W, Wu Q, Zhao X, Huang Z et al (2014) Enhanced thermal and mechanical properties of PVA composites formed with filamentous nanocellulose fibrils. Carbohydr Polymers 113:403–410CrossRefGoogle Scholar
  144. 144.
    Li W, Zhao X, Huang Z, Liu S (2013) Nanocellulose fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly (vinyl alcohol) films. J Polymer Res 20: article no 210Google Scholar
  145. 145.
    Ma Q, Hu D, Wang L (2016) Preparation and physical properties of tara gum film reinforced with cellulose nanocrystals. Intl J Biol Macromol 86:606–612CrossRefGoogle Scholar
  146. 146.
    Mandal A, Chakrabarty D (2014) Studies on the mechanical, thermal, morphological and barrier properties of nanocomposites based on poly(vinyl alcohol) and nanocellulose from sugarcane bagasse. J Indust Eng Chem 20:462–473CrossRefGoogle Scholar
  147. 147.
    Nasseri R, Mohammadi N (2014) Starch-based nanocomposites: a comparative performance study of cellulose whiskers and starch nanoparticles. Carbohydr Polym 106:432–439CrossRefGoogle Scholar
  148. 148.
    Oun AA, Rhim JW (2015) Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr Polym 127:101–109CrossRefGoogle Scholar
  149. 149.
    Oun AA, Rhim JW (2016) Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydr Polym 150:187–200CrossRefGoogle Scholar
  150. 150.
    Oun AA, Rhim JW (2017) Effect of oxidized chitin nanocrystals isolated by ammonium persulfate method on the properties of carboxymethyl cellulose-based films. Carbohydr Polym 175:712–720CrossRefGoogle Scholar
  151. 151.
    Paralikar SA, Simonsen J, Lombardi J (2008) Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes. J Membrane Sci 320:248–258CrossRefGoogle Scholar
  152. 152.
    Silverio HA, Neto WPF, Pasquini D (2013) Effect of incorporating cellulose nanocrystals from corncob on the tensile, thermal and barrier properties of poly(vinyl alcohol) nanocomposites. J Nanomater, article no 289641Google Scholar
  153. 153.
    Sirviö JA, Kolehmainen A, Liimatainen H et al (2014) Biocomposite cellulose-alginate films: promising packaging materials. Food Chem 151:343–351CrossRefGoogle Scholar
  154. 154.
    Shrestha S, Montes F, Schueneman GT et al (2018) Effects of aspect ratio and crystal orientation of cellulose nanocrystals on properties of poly(vinyl alcohol) composite fibers. Composites Sci Technol 167:482–488CrossRefGoogle Scholar
  155. 155.
    Zhou YM, Fu SY, Zheng LM et al (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films, eXPRESS Polymer Lett 6:794–804CrossRefGoogle Scholar
  156. 156.
    De Moura MR, Aouada FA, Avena-Bustillos RJ et al (2009) Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J Food Eng 92:448–453CrossRefGoogle Scholar
  157. 157.
    Kerch G (2015) Chitosan films and coatings prevent losses of fresh fruit nutritional quality: a review. Trends Food Sci Technol 46:159–166CrossRefGoogle Scholar
  158. 158.
    Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61CrossRefGoogle Scholar
  159. 159.
    Viera da Silva ISV, Neto WPF, Silverio HA et al (2017) Mechanical, thermal and barrier properties of pectin/cellulose nanocrystal nanocomposite films and their effect on the storability of strawberries (Fragaria ananassa). Polym Advan Technol 28:1005–1012CrossRefGoogle Scholar
  160. 160.
    Wang HX, Qan J, Ding FY (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66:395–413CrossRefGoogle Scholar
  161. 161.
    Angellier H, Molina-Boisseau S, Dole P et al (2006) Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromol 7:531–539CrossRefGoogle Scholar
  162. 162.
    Ma XF, Jian RJ, Chang PR et al (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromol 9:3314–3320CrossRefGoogle Scholar
  163. 163.
    Svagan AJ, Hedenqvist MS, Berglund L (2009) Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Compos Sci Technol 69:500–506CrossRefGoogle Scholar
  164. 164.
    Atef M, Rezaei M, Behrooz R (2015) Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oils. Food Hydrocolloids 45:150–157CrossRefGoogle Scholar
  165. 165.
    Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng, C 33:1819–1841CrossRefGoogle Scholar
  166. 166.
    Liu K, Lin X, Chen L et al (2014) Dual-functional chitosan-methylisothiazolinone/microfibrillated cellulose biocomposites for enhancing antibacterial and mechanical properties of agar films. Cellulose 21:519–528CrossRefGoogle Scholar
  167. 167.
    Liu K, Lin X, Chen L et al (2013) Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films. J Agric Food Chem 61:6562–6567CrossRefGoogle Scholar
  168. 168.
    Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal reinforced pullulan films. Carbohydr Polym 68:146–158CrossRefGoogle Scholar
  169. 169.
    LeCorre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromol 11:1139–1153CrossRefGoogle Scholar
  170. 170.
    Walsh NP, Blannin AK, Clark AM et al (1999) The effects of high-intensity intermittent exercise on saliva IgA, total protein and alpha-amylase. J Sports Sci 17:129–134CrossRefGoogle Scholar
  171. 171.
    Herrera MP, Vasanthan T, Hoover R (2016) Characterization of maize starch nanoparticles prepared by acid hydrolysis. Cereal Chem 93:323–330CrossRefGoogle Scholar
  172. 172.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  173. 173.
    Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromol 5:1046–1051CrossRefGoogle Scholar
  174. 174.
    Revol JF, Marchessault RH (1993) In-vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol 15:329–335CrossRefGoogle Scholar
  175. 175.
    Nair KG, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites 1 processing and swelling behavior. Biomacromol 4:657–665CrossRefGoogle Scholar
  176. 176.
    van den Broek LAM, Knoop RJI, Kappen FHJ et al (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242CrossRefGoogle Scholar
  177. 177.
    Lorevice MV, Otoni CG, de Moura MR et al (2016) Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids 52:732–740CrossRefGoogle Scholar
  178. 178.
    Hubbe MA, Tayeb P, Joyce M et al (2017) Rheology of nanocellulose-rich aqueous suspensions: a Review. BioResources 12:9556–9661Google Scholar
  179. 179.
    Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromol 3:609–617CrossRefGoogle Scholar
  180. 180.
    Samir MASA, Alloin F, Gorecki W et al (2004) Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose nanocrystals. J Phys Chem B 108:10845–10852CrossRefGoogle Scholar
  181. 181.
    Chinga-Carrasco G, Syverud K (2010) Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanoparticle Res 12:841–851CrossRefGoogle Scholar
  182. 182.
    Bideau B, Bras J, Adoui N et al (2017) Polypyrrole/ nanocellulose composite for food preservation: barrier and antioxidant characterization. Food Packag Shelf Life 12:1–8CrossRefGoogle Scholar
  183. 183.
    Dai L, Long Z, Chen J et al (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9:5477–5485CrossRefGoogle Scholar
  184. 184.
    Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRefGoogle Scholar
  185. 185.
    Olsson RT, Fogelström L, Martínez-Sanz M et al (2011) Cellulose nanofillers for food packaging. In: Jagarón JM (ed) Multifuctional and nanoreinforced polymers for food packaging. Woodhead Publ Ltd., Elsevier BV, Amsterdam, pp 86–107CrossRefGoogle Scholar
  186. 186.
    Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766CrossRefGoogle Scholar
  187. 187.
    Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779Google Scholar
  188. 188.
    Hubbe MA, Rojas OJ, Lucia LA (2015) Green modification of surface characteristics of cellulosic materials at the molecular or nano scale: a review. BioResources 10:6095–6229Google Scholar
  189. 189.
    Follain N, Belbekhouche S, Bras J et al (2018) Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network. Colloids Surf. A - Physicochem Eng Aspects 545:26–30CrossRefGoogle Scholar
  190. 190.
    Kalia S, Dufresne A, Cherian BM et al (2011) Cellulose-based bio- and nanocomposites: a review. Intl J Polym Sci 2011, article no 837875Google Scholar
  191. 191.
    Tome LC, Brandao L, Mendes AM et al (2010) Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. Cellulose 17:1203–1211CrossRefGoogle Scholar
  192. 192.
    Wiles JL, Vergano PJ, Barron FH et al (2000) Water vapor transmission rates and sorption behavior of chitosan films. J Food Sci 65:1175–1179CrossRefGoogle Scholar
  193. 193.
    Salleh E, Muhamad II, Khairuddin N (2009) Structural characterization and physical properties of antimicrobial (AM) starch-based films. World Acad Sci Eng Technol 55:432–440Google Scholar
  194. 194.
    Stevanic JS, Bergström EM, Gatenholm P et al (2012) Arabinoxylan/nanofibrillated cellulose composite films. J Mater Sci 47:6724–6732CrossRefGoogle Scholar
  195. 195.
    Österberg M, Vartiainen J, Lucenius J et al (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. ACS Appl Mater Interfaces 5:4640–4647CrossRefGoogle Scholar
  196. 196.
    Aulin C, Karabulut E, Tran A et al (2013) Transparent nanocellulose multilayer thin films on polylacktic acid with tunable gas barrier properties. ACS Appl Mater Interfaces 5:7352–7359CrossRefGoogle Scholar
  197. 197.
    Trifol J, Plackett D, Sillard C et al (2016) A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. J Appl Polym Sci 133: article no 43257Google Scholar
  198. 198.
    Liu YX, Sun B, Wang ZL et al (2016) Mechanical and water vapor barrier properties of bagasse hemicellulose-based films. BioResources 11:4226–4236Google Scholar
  199. 199.
    Tyagi P, Lucia LA, Hubbe MA et al (2019) Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance. Carbohydr Polym 206:281–288CrossRefGoogle Scholar
  200. 200.
    Zhang. R, Wang X, Cheng M (2018) Preparation and characterization of potato starch film with various size of nano-SiO2, Polymers 10: article no 1172Google Scholar
  201. 201.
    Amini E, Azadfallah M, Layeghi M et al (2016) Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 23:557–570CrossRefGoogle Scholar
  202. 202.
    Bedane AH, Eić M, Farmahini-Farahani M et al (2015) Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J Membrane Sci 493:46–57CrossRefGoogle Scholar
  203. 203.
    Spence KL, Venditti RA, Rojas OJ et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: water interactions and physical properties for packaging applications. Cellulose 17:835–848CrossRefGoogle Scholar
  204. 204.
    Minelli M, Baschetti MG, Doghieri F et al (2010) Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J Membrane Sci 358:67–75CrossRefGoogle Scholar
  205. 205.
    Wang JW, Gardner DJ, Stark NM et al (2018) Moisture and oxygen barrier properties of cellulose nanomaterial-based films. ACS Sustain Chem Eng 6:49–70CrossRefGoogle Scholar
  206. 206.
    Aiba S, Ohashi M, Huang SY (1968) Rapid determination of oxygen permeability of polymer membranes. Indust Eng Chem Fund I7:497–502CrossRefGoogle Scholar
  207. 207.
    Rodionova G, Roudot S, Eriksen Ø et al (2012) The formation and characterization of sustainable layered films incorporating microfibrillated cellulose (MFC). BioResources 7:3690–3700Google Scholar
  208. 208.
    Villani C, Loser R, West MJ et al (2014) An inter lab comparison of gas transport testing procedures: oxygen permeability and oxygen diffusivity. Cement Concrete Composites 53:357–366CrossRefGoogle Scholar
  209. 209.
    Dai L, Wang B, Long Z et al (2015) Properties of hydroxypropyl guar/TEMPO-oxidized cellulose nanofibrils composite films. Cellulose 22:3117–3126CrossRefGoogle Scholar
  210. 210.
    Kisonen V, Prakobna K, Xu CL et al (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J Mater Sci 50:3189–3199CrossRefGoogle Scholar
  211. 211.
    Naderi A, Lindström T, Weise CF et al (2016) Phosphorylated nanofibrillated cellulose: production and properties. Nordic Pulp Paper Res J 31:20–29CrossRefGoogle Scholar
  212. 212.
    Tyagi P, Hubbe MA, Lucia L et al (2018) High performance nanocellulose-based composite coatings for oil and grease resistance. Cellulose 25:3377–3391CrossRefGoogle Scholar
  213. 213.
    Gajdoš J, Galić K, Kurtanjek Ž et al (2001) Gas permeability and DSC characteristics of polymers used in food packaging. Polym Testing 20(1):49–57CrossRefGoogle Scholar
  214. 214.
    Siracusa V, Blanco I, Romani S et al (2012) Poly(lactic acid)-modified films for food packaging application: physical, mechanical, and barrier behavior. J Appl Polym Sci 125:E390–E401CrossRefGoogle Scholar
  215. 215.
    Kofinas P, Cohen RE, Halasa AF (1994) Gas-permeability of polyethylene poly(ethylene propylene) semicrystalline diblock copolymers. Polymer 35:1229–1235CrossRefGoogle Scholar
  216. 216.
    Kumar V, Elfving A, Koivula H et al (2016) Roll-to-roll processed cellulose nanofiber coatings. Ind Eng Chem Res 55:3603–3613CrossRefGoogle Scholar
  217. 217.
    Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRefGoogle Scholar
  218. 218.
    Lagaron JM, Catala R, Gavara R (2004) Structural characteristics defining high barrier properties in polymeric materials. Mater Sci Technol 20:1–7CrossRefGoogle Scholar
  219. 219.
    McKee JR, Huokuna J, Martikainen L et al (2014) Molecular engineering of fracture energy dissipating sacrificial bonds into cellulose nanocrystal nanocomposites. Angew Chem Intl Ed 53:5049–5053Google Scholar
  220. 220.
    Wolf C, Angellier-Coussy H, Gontard N et al (2018) How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: a review. J Membrane Sci 556:393–418CrossRefGoogle Scholar
  221. 221.
    Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Frontiers Microbiol 6: article no UNSP 611Google Scholar
  222. 222.
    Khaneghah AM, Hashemi SMB, Limbo S (2018) Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food Bioprod Proc 111:1–19CrossRefGoogle Scholar
  223. 223.
    Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. Food Sci Technol 43:837–842Google Scholar
  224. 224.
    Cazon P, Velazquez G, Ramirez JA et al (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocolloids 68:136–148CrossRefGoogle Scholar
  225. 225.
    Rhim JW, Hong SI, Park HM et al (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822CrossRefGoogle Scholar
  226. 226.
    Velasquez-Cock J, Ramirez E, Betancourt S et al (2014) Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. Int J Biol Macromol 69:208–213CrossRefGoogle Scholar
  227. 227.
    Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microbial Biotech 2:186–201CrossRefGoogle Scholar
  228. 228.
    Rhim JW, Ng PKW (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutrition 47:411–433CrossRefGoogle Scholar
  229. 229.
    Herrera MA, Mathew AP, Oksman K (2017) Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications. Cellulose 24:3969–3980CrossRefGoogle Scholar
  230. 230.
    Giannakas A, Grigoriadi K, Leontiou A et al (2014) Preparation, characterization, mechanical and barrier properties investigation of chitosan-clay nanocomposites. Carbohydr Polym 108:103–111CrossRefGoogle Scholar
  231. 231.
    Abdollahi M, Rezai M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111:343–350CrossRefGoogle Scholar
  232. 232.
    Muller CMO, Laurindo JB, Yamashita F (2011) Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Indust Crops Prod 33:605–610CrossRefGoogle Scholar
  233. 233.
    Abdorreza MN, Abd Karim A (2013) Mechanical, barrier, physicochemical, and heat seal properties of starch films filled with nanoparticles. J Nano Res 25:90–100CrossRefGoogle Scholar
  234. 234.
    Bardet R, Reverdy C, Belgacem N et al (2015) Substitution of nanoclay in high gas barrier films of cellulose nanofibrils with cellulose nanocrystals and thermal treatment. Cellulose 22:1227–1241CrossRefGoogle Scholar
  235. 235.
    Gamelas JAF, Ferraz E (2015) Composite films based on nanocellulose and nanoclay minerals as high strength materials with gas barrier capabilities: key points and challenges. BioResources 10:6310–6313CrossRefGoogle Scholar
  236. 236.
    Mohan TP, Devchand K, Kanny K (2017) Barrier and biodegradable properties of corn starch-derived biopolymer film filled with nanoclay fillers. J Plastic Film Sheeting 33(3):309–336CrossRefGoogle Scholar
  237. 237.
    Rhim JW (2011) Effect of clay contents on mechanical and water vapor barrier properties of agar-based nanocomposite films. Carbohydr Polym 86:291–699CrossRefGoogle Scholar
  238. 238.
    Saurabh CK, Gupta S, Bahadur J et al (2015) Mechanical and barrier properties of guar gum based nano-composite films. Carbohydr Polym 124:77–84CrossRefGoogle Scholar
  239. 239.
    Wolf JR, Strieder W (1990) Surface and void tortuosities for a random fiber bed - Overlapping, parallel cylinders of several radii. J Membrane Sci 49:103–115CrossRefGoogle Scholar
  240. 240.
    Zalc JM, Reyes SC, Iglesia E (2004) The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures. Chem Eng Sci 59:2947–2960CrossRefGoogle Scholar
  241. 241.
    Hubbe MA (2017) Hybrid filler (cellulose/noncellulose) reinforced nanocomposites. In: Kargarzadeh H, Ahmad I, Thomas S, Dufresne A (eds) Handbook of nanocellulose and cellulose nanocomposites. Vol 1, Wiley, pp 273–299. (Ch 8)Google Scholar
  242. 242.
    Liu AD, Walther A, Ikkala O et al (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromol 12:633–641CrossRefGoogle Scholar
  243. 243.
    Mirmehdi S, Hein PRG, Sarantopoulos CIGD et al (2018) Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers. Food Packag Shelf Life 15:87–94CrossRefGoogle Scholar
  244. 244.
    Wang YX, Cao XD, Zhang LN (2006) Effects of cellulose whiskers on properties of soy protein thermoplastics. Macromol Biosci 6:524–531CrossRefGoogle Scholar
  245. 245.
    Soykeabkaew N, Laosat N, Ngaokla A et al (2012) Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Composites Sci Technol 72:845–852CrossRefGoogle Scholar
  246. 246.
    Sharma S, Zhang X, Nair SS et al (2014) Thermally enhanced high performance cellulose nano fibril barrier membranes. RSC Adv 4(85):45136–45142CrossRefGoogle Scholar
  247. 247.
    Xia JY, Zhang Z, Liu W et al (2018) Highly transparent 100% cellulose nanofibril films with extremely high oxygen barriers in high relative humidity. Cellulose 25:4057–4066CrossRefGoogle Scholar
  248. 248.
    Ponni R, Vuorinen T, Kontturi E (2012) Proposed nano-scale coalescence of cellulose in chemical pulp fibers during technical treatments. BioResources 7:6077–6108CrossRefGoogle Scholar
  249. 249.
    Yang SJ, Tang YJ, Wang JM et al (2014) Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose. Indust Eng Chem Res 53:13980–13988CrossRefGoogle Scholar
  250. 250.
    Kerekes RJ, Schell CJ (1992) Characerization of fiber flocculation regimes by a crowding factor. J Pulp Paper Sci 18:J32–J38Google Scholar
  251. 251.
    Hubbe MA (2007) Flocculation and redispersion of cellulosic fiber suspensions: a review of effects of hydrodynamic shear and polyelectrolytes. BioResources 2:296–331Google Scholar
  252. 252.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  253. 253.
    Capadona JR, Van Den Berg O, Capadona LA et al (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotech 1:765–769CrossRefGoogle Scholar
  254. 254.
    Gontard N, Duchez C, Cuq JL et al (1994) Edible composite films of wheat gluten and lipids—water-vapor permeability and other physical properties. Intl J Food Sci Technol 29:39–50CrossRefGoogle Scholar
  255. 255.
    Talja RA, Helén H, Roos YH et al (2007) Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr Polym 67:288–295CrossRefGoogle Scholar
  256. 256.
    Miranda CS, Ferreira MS, Magalhães MT et al (2015) Mechanical, thermal and barrier properties of starch-based films plasticized with glycerol and lignin and reinforced with cellulose nanocrystals. Mater Today Proc 2:63–69CrossRefGoogle Scholar
  257. 257.
    Arvanitoyannis IS, Nakayama A, Aiba S (1998) Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydr Polym 37:371–382CrossRefGoogle Scholar
  258. 258.
    Caner C, Vergano PJ, Wiles JL (1998) Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J Food Sci 63:1049–1053CrossRefGoogle Scholar
  259. 259.
    Olivas GI, Barbosa-Cánovas GV (2008) Alginate-calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT-Food Sci Technol 41:359–366CrossRefGoogle Scholar
  260. 260.
    Peng XW, Ren JL, Zhong LX et al (2011) Nanocomposite films based on xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromol 2011:3321–3329CrossRefGoogle Scholar
  261. 261.
    Lagarón JM (2011) Multifunctional and nanoreinforced polymers for food packaging. In: Jagarón JM (ed) Multifuctional and nanoreinforced polymers for food packaging. Woodhead Publ Ltd., Elsevier BV, Amsterdam, pp 1–28CrossRefGoogle Scholar
  262. 262.
    Lu P, Xiao HN, Pan YF (2015) Improving water vapor barrier of green-based nanocellulose film via hydrophobic coating. In: Chung SL (ed), proceedings of the 2014 international conference on materials science and energy engineering (CMSEE 2014), pp 148–153Google Scholar
  263. 263.
    Jiang G, Zhang MD, Feng J et al (2017) High oxygen barrier property of poly(propylene carbonate)/polyethylene glycol nanocomposites with low loading of cellulose nanocrystals. ACS Sustain Chem Eng 5:11246–11254CrossRefGoogle Scholar
  264. 264.
    Rafieian F, Shahedi M, Keramat J et al (2014) Mechanical, thermal and barrier properties of nano-biocomposite based on gluten and carboxylated cellulose nanocrystals. Indust Crops Prod 53:282–288CrossRefGoogle Scholar
  265. 265.
    Reddy JP, Rhim JW (2014) Characterization of bionanocomposite films prepared with agar and paper- mulberry pulp nanocellulose. Carbohydr Polym 110:480–488CrossRefGoogle Scholar
  266. 266.
    Rhim JW, Reddy JP, Luo X (2015) Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites film. Cellulose 22:407–420CrossRefGoogle Scholar
  267. 267.
    Wang WH, Zhang XL, Li C et al (2018) Using carboxylated cellulose nanofibers to enhance mechanical and barrier properties of collagen fiber film by electrostatic interaction. J Sci Food Agric 98:3089–3097Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Forest Biomaterials, College of Natural ResourcesNorth Carolina State UniversityRaleighUSA

Personalised recommendations