Nanopolysaccharides in Energy Storage Applications

  • Chenggang Zhang
  • Yan Liu
  • Wenchao Yu
  • Yang Zhan
  • Jinyu Wang
  • Chuanxi Xiong
  • Zhuqun ShiEmail author
  • Quanling YangEmail author
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 15)


In the recent decades, shortages of energy and resource, together with pollution of environment, have become the biggest problems on earth. Thus, construction of novel renewable and biodegradable materials based on nanopolysaccharides, such as nanocellulose, nanochitin or nanochitosan, and nanostarch, and exploration of their energy related applications, have received more and more attention. In this chapter, we review the preparation of nanopolysaccharide-based energy materials as well as their applications in the fields of energy storage, e.g. dielectric capacitor, supercapacitors, batteries, etc.


Nanopolysaccharides Dielectric capacitor Supercapacitors Batteries 



This work was supported by the National Natural Science Foundation of China (No. 51703177, 21704079), the Fundamental Research Funds for the Central Universities (WUT: 2018III009, 2018IVB022, 2018IVB041), and Key laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry council, Beijing Technology and Business University (No. PQETGP2019007).


  1. 1.
    Winter M, Brodd RJ (2014) What are batteries, fuel cells and supercapacitors? Chem Rev 104:4245–4270CrossRefGoogle Scholar
  2. 2.
    Li Q, Yao F-Z, Liu Y et al (2018) High-temperature dielectric materials for electrical energy storage. Annu Rev Mater Res 48:3.1–3.25CrossRefGoogle Scholar
  3. 3.
    Wen L, Li F, Cheng H-M (2016) Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv Mater 28:4306–4337CrossRefGoogle Scholar
  4. 4.
    Dubal D, Chodankar N, Kim D-H et al (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129CrossRefGoogle Scholar
  5. 5.
    He J, Manthiram A (2019) A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater 20:55–70CrossRefGoogle Scholar
  6. 6.
    Sun Y, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1:16071CrossRefGoogle Scholar
  7. 7.
    Wang X, Lu X, Liu B et al (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26:4763CrossRefGoogle Scholar
  8. 8.
    Zhou Y, Li Q, Dang B et al (2018) A scalable, high-throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures. Adv Mater 30:1805672CrossRefGoogle Scholar
  9. 9.
    Chen W, Yu H, Lee SY et al (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872CrossRefGoogle Scholar
  10. 10.
    Bras DL, Stromme M, Mihranyan A (2015) Characterization of dielectric properties of nanocellulose from wood and algae for electrical insulator applications. J Phys Chem B 119:5911–5917CrossRefGoogle Scholar
  11. 11.
    Kim JH, Lee D, Lee YH et al (2018) Nanocellulose for energy storage systems: beyond the limits of synthetic materials. Adv Mater 31:1804826CrossRefGoogle Scholar
  12. 12.
    Vicente A, Araújo A, Mendes M et al (2018) Multifunctional cellulose-paper for light harvesting and smart sensing applications. J Mater Chem C 6:3143–3181CrossRefGoogle Scholar
  13. 13.
    Moon R, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  14. 14.
    Sahin H, Ay N (2004) Dielectric properties of hardwood species at microwave frequencies. J Wood Sci 50:375–380CrossRefGoogle Scholar
  15. 15.
    Ishida Y, Yōshino M, Takayanagi M et al (1959) Dielectric studies on cellulose fibers. J Appl Polym Sci 1:227–235CrossRefGoogle Scholar
  16. 16.
    Rout S, Anwar S, Tripathy B et al (2019) Nanosilver coated coir based dielectric materials with high K and low Df for embedded capacitors and insulating material applications—a greener approach. ACS Sustain Chem Eng 7:3824–3837CrossRefGoogle Scholar
  17. 17.
    Yang Q, Zhang C, Shi Z et al (2018) Luminescent and transparent nanocellulose films containing europium carboxylate groups as flexible dielectric materials. ACS Appl Nano Mater 1:4972–4979CrossRefGoogle Scholar
  18. 18.
    Tang C, Liao R, Chen G et al (2011) Research on the feature extraction of DC space charge behavior of oil-paper insulation. Sci China Technol Sci 54:1315–1324CrossRefGoogle Scholar
  19. 19.
    Petritz A, Wolfberger A, Fian A et al (2013) Cellulose as biodegradable high-k dielectric layer in organic complementary inverters. Appl Phys Lett 103:153303–153308CrossRefGoogle Scholar
  20. 20.
    Kafy A, Sadasivuni K, Kim HC et al (2015) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17:5923–5931CrossRefGoogle Scholar
  21. 21.
    Irimia-Vladu M, Troshin P, Reisinger M et al (2010) Biocompatible and biodegradable materials for organic field-effect transistors. Adv Funct Mater 20:4069–4076CrossRefGoogle Scholar
  22. 22.
    Ji S, Jang J, Cho E et al (2017) High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Adv Mater 29:1700538CrossRefGoogle Scholar
  23. 23.
    Yang J, Xie H, Chen H et al (2018) Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J Mater Chem A 6:1403–1411CrossRefGoogle Scholar
  24. 24.
    Zhang C, Yin Y, Yang Q et al (2019) Flexible cellulose/BaTiO3 nanocomposites with high energy density for film dielectric capacitor. ACS Sustain Chem Eng 7:10641–10648CrossRefGoogle Scholar
  25. 25.
    Jayamani E, Hamdan S, Rahman M et al (2014) Comparative study of dielectric properties of hybrid natural fiber composites. Procedia Eng 97:536–544CrossRefGoogle Scholar
  26. 26.
    Mehta M, Parsania P et al (2006) Fabrication and evaluation of some mechanical and electrical properties of jute-biomass based hybrid composites. J Appl Polym Sci 100:1754–1758CrossRefGoogle Scholar
  27. 27.
    Sreekumar P, Saiter J, Joseph K et al (2012) Electrical properties of short sisal fiber reinforced polyester composites fabricated by resin transfer molding. Compos Part A Appl Sci Manuf 43:507–511CrossRefGoogle Scholar
  28. 28.
    Zeng X, Deng L, Yao Y et al (2016) Flexible dielectric papers based on biodegradable cellulose nanofibers and carbon nanotubes for dielectric energy storage. J Mater Chem C 4:6037–6044CrossRefGoogle Scholar
  29. 29.
    Raghunathan S, Narayanan S, Poulose A et al (2016) Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties. Carbohydr Polym 157:1024–1032CrossRefGoogle Scholar
  30. 30.
    Jia C, Shao Z, Fan H et al (2015) Preparation and dielectric properties of cyanoethyl cellulose/BaTiO3 flexible nanocomposite films. RSC Adv 5(20):15283–15291CrossRefGoogle Scholar
  31. 31.
    Jia C, Shao Z, Fan H et al (2016) Barium titanate as a filler for improving the dielectric property of cyanoethyl cellulose/antimony tin oxide nanocomposite films. Compos Part A Appl Sci Manuf 86:1–8CrossRefGoogle Scholar
  32. 32.
    Wu K, Fang J, Ma J et al (2017) Achieving a collapsible, strong and highly thermally conductive film based on oriented functionalized boron nitride nanosheets and cellulose nanofiber. ACS Appl Mater Interfaces 9(35):30035–30045CrossRefGoogle Scholar
  33. 33.
    Lao J, Xie H, Shi Z et al (2018) Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength. ACS Sustain Chem Eng 6:7151–7158CrossRefGoogle Scholar
  34. 34.
    Chen H, Liu B, Yang Q et al (2017) Facile one-step exfoliation of large-size 2D materials via simply shearing in triethanolamine. Mater Lett 199:24–127CrossRefGoogle Scholar
  35. 35.
    Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11:1696–1700CrossRefGoogle Scholar
  36. 36.
    Saito T, Nishiyama Y, Putaux J et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691CrossRefGoogle Scholar
  37. 37.
    Cai J, Zhang L, Liu S et al (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351CrossRefGoogle Scholar
  38. 38.
    Zhang L, Mao Y, Zhou J et al (2005) Effects of coagulation conditions on the properties of regenerated cellulose films prepared in NaOH/urea aqueous solution. Ind Eng Chem Res 44:522–529CrossRefGoogle Scholar
  39. 39.
    Huang X, Jiang P, Tanaka T (2011) A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul M 27:8–16CrossRefGoogle Scholar
  40. 40.
    Sarangapani S (1996) Materials for electrochemical capacitors. J Electrochem Soc 143:3791–3799CrossRefGoogle Scholar
  41. 41.
    Isogai A, Saitot T, Fukuzumih H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRefGoogle Scholar
  42. 42.
    Gao KZ, Shao ZQ, Jia L et al (2013) Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J Mater Chem A 1:63–67CrossRefGoogle Scholar
  43. 43.
    Hamedi Karabulut M, Marais E et al (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52(46):12038–12042CrossRefGoogle Scholar
  44. 44.
    Zheng Q, Zhang H, Mi H et al (2016) High-performance flexible piezoelectric nanogenerators consisting of porous cellulose nanofibril (CNF)/poly(dimethylsiloxane) (PDMS) aerogel films. Nano Energy 26:504–512CrossRefGoogle Scholar
  45. 45.
    Zheng Q, Cai Z, Ma Z et al (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7(5):3263–3271CrossRefGoogle Scholar
  46. 46.
    Zhang X, Lin Z, Chen B et al (2014) Solid-state flexible polyaniline/silver cellulose nanofibrils aerogel supercapacitors. J Power Sources 246(3):283–289CrossRefGoogle Scholar
  47. 47.
    Li S, Huang D, Yang J et al (2014) Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy 9:309CrossRefGoogle Scholar
  48. 48.
    Cai J, Niu H, Li Z et al (2015) High-performnace supercapacitor electrode materials form cellulose-derived carbon nanofibers. ACS Appl Mater Interfaces 7(27):14946CrossRefGoogle Scholar
  49. 49.
    Li Z, Liu J, Jiang K et al (2016) Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25:161–16940CrossRefGoogle Scholar
  50. 50.
    Bi Z, Kong Q, Cao Y et al (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7(27):16028–16045CrossRefGoogle Scholar
  51. 51.
    Cai J, Niu H, Wang H et al (2016) High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers. J Power Sources 324:302–308CrossRefGoogle Scholar
  52. 52.
    Berenguer R, García-Mateos F, Ruiz-Rosas R et al (2016) Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green Chem 18(6):1506–1515CrossRefGoogle Scholar
  53. 53.
    Jin Z, Yan X, Yu Y et al (2014) Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J Mater Chem A2(30):11706–11715CrossRefGoogle Scholar
  54. 54.
    Liu Y, Shi Z, Gao Y et al (2016) Biomass-swelling assisted synthesis of hierarchical porous carbon fibers for supercapacitor electrodes. ACS Appl Mater Interfaces 8(42):28283–28290CrossRefGoogle Scholar
  55. 55.
    Zhang X, Meng X, Gong S et al (2016) Synthesis and characterization of 3D MnO2/carbon microtube bundle for supercapacitor electrodes. Mater Lett 179:73–77CrossRefGoogle Scholar
  56. 56.
    Zhang X, Zhang K, Li H et al (2017) Porous graphitic carbon microtubes derived from willow catkins as a substrate of MnO2 for supercapacitors. J Power Sources 344:176–184CrossRefGoogle Scholar
  57. 57.
    Purkait T, Singh G, Singh M et al (2017) Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci Rep UK 7(1)Google Scholar
  58. 58.
    Qian W, Sun F, Xu Y et al (2013) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7(1):379–386CrossRefGoogle Scholar
  59. 59.
    Wang C, Wu D, Wang H et al (2017) Nitrogen-doped two-dimensional porous carbon sheets derived from clover biomass for high performance supercapacitors. J Power Sources 363:375–383CrossRefGoogle Scholar
  60. 60.
    An Y, Li Z, Yang Y et al (2017) Synthesis of hierarchically porous nitrogen-doped carbon nanosheets from agaric for high-performance symmetric supercapacitors. Adv Mater Interfaces 4(12):1700033CrossRefGoogle Scholar
  61. 61.
    Ling Z, Wang Z, Zhang M et al (2015) Sustainable synthesis and assembly of biomass-derived B/N Co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26(1):111–119CrossRefGoogle Scholar
  62. 62.
    You J, Li M, Ding B et al (2017) Crab chitin-based 2D soft nanomaterials for fully biobased electric devices. Adv Mater 29(19):1606895CrossRefGoogle Scholar
  63. 63.
    Ma F, Song S, Wu G et al (2015) Facile self-template large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A3:18154–18162Google Scholar
  64. 64.
    Liang Q, Ye L, Huang Z et al (2014) A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6(22):13831–13837CrossRefGoogle Scholar
  65. 65.
    Duan B, Gao X, Yao X et al (2016) Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy 27:482–491CrossRefGoogle Scholar
  66. 66.
    Gao L, Xiong L, Xu D et al (2018) Distinctive construction of chitin derived hierarchically porous carbon microspheres/polyaniline for high rate supercapacitors. ACS Appl Mater Interfaces 10(34):28918–28927CrossRefGoogle Scholar
  67. 67.
    Zhao G, Chen C, Yu D et al (2018) One-step production of O-N-S Co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47:547–555CrossRefGoogle Scholar
  68. 68.
    Yu P, Zhang Z, Zheng L et al (2016) A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv Energy Mater 6(20):1601111CrossRefGoogle Scholar
  69. 69.
    Chen C, Zhang Y, Li Y et al (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10(2):538–545CrossRefGoogle Scholar
  70. 70.
    Chen C, Hu L (2018) Nanocellulose toward advanced energy storage devices: structure and electrochemistry. Acc Chem Res 51(12):3154–3165CrossRefGoogle Scholar
  71. 71.
    Wang Z, Tammela P, Strømme M et al (2017) Cellulose-based supercapacitors: material and performance considerations. Adv Energy Mater 7(18):1700130CrossRefGoogle Scholar
  72. 72.
    Chen W, Yu H, Lee S et al (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47(8):2837–2872CrossRefGoogle Scholar
  73. 73.
    Ling S, Chen W, Fan Y et al (2018) Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 85:1–56CrossRefGoogle Scholar
  74. 74.
    Jost K, Durkin DP, Haverhals L et al (2015) Natural fiber welded electrode yarns for knittable textile supercapacitors. Adv Energy Mater 5(4):1401286CrossRefGoogle Scholar
  75. 75.
    Li Y, Zhu H, Shen F et al (2014) Highly conductive microfiber of graphene oxide templated carbonization of nanofibrillated cellulose. AdvFunct Mater 24(46):7366–7372CrossRefGoogle Scholar
  76. 76.
    Wu F, Zhao E, Gordon D et al (2016) Infiltrated porous polymer sheets as free-standing flexible lithium-sulfur battery electrodes. Adv Mater 28(30):6365–6371CrossRefGoogle Scholar
  77. 77.
    Tu S, Chen X, Zhao X et al (2018) A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium–sulfur batteries. Adv Mater 30(45):e1804581CrossRefGoogle Scholar
  78. 78.
    Wang YY, Hou BH, Lu HY et al (2015) Porous N-doped carbon material derived from prolific chitosan biomass as a high-performance electrode for energy storage. RSC Adv 5(118):97427–97434CrossRefGoogle Scholar
  79. 79.
    Yang Y, Cui J, Zheng M et al (2012) One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem Commun 48(3):380–382CrossRefGoogle Scholar
  80. 80.
    Han C, Xu L, Li H et al (2018) Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon 140:296–305CrossRefGoogle Scholar
  81. 81.
    Park HR, Jung KA, Lim SR et al (2014) Quantitative sustainability assessment of seaweed biomass as bioethanol feedstock. Bioenergy Res 7(3):974–985CrossRefGoogle Scholar
  82. 82.
    Li D, Yang D, Zhu X et al (2014) Simple pyrolysis of cobalt alginate fibres into Co3O4/C nano/microstructures for a high-performance lithium ion battery anode. J Mater Chem A 2(44):18761–18766CrossRefGoogle Scholar
  83. 83.
    Xiao S, Yang Y, Li M et al (2014) A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries. J Power Sources 270:53–58CrossRefGoogle Scholar
  84. 84.
    Pan R, Wang Z, Sun R et al (2017) Thickness difference induced pore structure variations in cellulosic separators for lithium-ion batteries. Cellulose 24(7):2903–2911CrossRefGoogle Scholar
  85. 85.
    Zhao D, Chen C, Zhang Q et al (2017) High performance, flexible, solid-state supercapacitors based on a renewable and biodegradable mesoporous cellulose membrane. Adv Energy Mater 7(18):1700739CrossRefGoogle Scholar
  86. 86.
    Kuribayashi I (1996) Characterization of composite cellulosic separators for rechargeable lithium-ion batteries. J Power Sources 63(1):87–91CrossRefGoogle Scholar
  87. 87.
    Zhang H, Wang X, Liang Y (2015) Preparation and characterization of a lithium-ion battery separator from cellulose nanofibers. Heliyon 1(2):e00032CrossRefGoogle Scholar
  88. 88.
    Kim JH, Gu M, Lee DH et al (2016) Functionalized nanocellulose-integrated heterolayered nanomats toward smart battery separators. Nano Lett 16(9):5533–5541CrossRefGoogle Scholar
  89. 89.
    Pan R, Xu X, Sun R et al (2018) Nanocellulose modified polyethylene separators for lithium metal batteries. Small 1704371Google Scholar
  90. 90.
    Li F, Wang G, Wang P et al (2017) High-performance lithium-sulfur batteries with a carbonized bacterial cellulose/TiO2 modified separator. J Electroanal Chem 788:150–155CrossRefGoogle Scholar
  91. 91.
    Xu Q, Wei C, Fan L et al (2017) A bacterial cellulose/Al2O3 nanofibrous composite membrane for a lithium-ion battery separator. Cellulose 24(4):1889–1899CrossRefGoogle Scholar
  92. 92.
    Chiappone A, Nair JR, Gerbaldi C et al (2011) Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J Power Sources 196(23):10280–10288CrossRefGoogle Scholar
  93. 93.
    Willgert M, Leijonmarck S, Lindbergh G et al (2014) Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications. J Mater Chem A 2(33):13556–13564CrossRefGoogle Scholar
  94. 94.
    Dong T, Zhang J, Xu G et al (2018) A multifunctional polymer electrolyte enables high-voltage lithium metal battery ultra-long cycle-life. Energy Environ Sci 11:1197–1203CrossRefGoogle Scholar
  95. 95.
    Choudhury NA, Sampath S, Shukla AK (2008) Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors. J Electrochem Soc 155(1):A74–A81CrossRefGoogle Scholar
  96. 96.
    Benedetti TM, Carvalho T, Iwakura DC et al (2015) All solid-state electrochromic device consisting of a water soluble viologen dissolved in gelatin-based ionogel. Sol Energy Mater Sol Cells 132:101–106CrossRefGoogle Scholar
  97. 97.
    Li H, Han C, Huang Y et al (2018) An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci 11(4):941–951CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chenggang Zhang
    • 1
  • Yan Liu
    • 1
  • Wenchao Yu
    • 1
  • Yang Zhan
    • 1
  • Jinyu Wang
    • 1
  • Chuanxi Xiong
    • 1
  • Zhuqun Shi
    • 2
    Email author
  • Quanling Yang
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations