Advertisement

Targeted Delivery with Carbon Nanotubes

  • Md Saquib HasnainEmail author
  • Amit Kumar Nayak
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Functionalized nanotubes have been frequently used to provide their corresponding areas of action with drugs, proteins, antibodies, nucleic acids other therapeutic agents. CNTs are primarily used in the therapy of malignant diseases like Burkitt’s lymphoma, choriocarcinoma, breast cancer, cervical carcinoma and testicular tumors (Thakare et al., Nanomedicine 5, 1277–1301 2010).

References

  1. S. Aggarwal, Targeted Cancer Therapies (Nature Publishing Group, 2010)Google Scholar
  2. A. Al Faraj, A.S. Shaik, E. Ratemi, R. Halwani, Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J. Controlled Release 225, 240–251 (2016)CrossRefGoogle Scholar
  3. T. Anderson, R. Hu, C. Yang, H.S. Yoon, K.-T. Yong, Pancreatic cancer gene therapy using an siRNA-functionalized single walled carbon nanotubes (SWNTs) nanoplex. Biomater. Sci. 2, 1244–1253 (2014)CrossRefGoogle Scholar
  4. S. Arora, R. Kumar, H. Kaur, C.S. Rayat, I. Kaur, S.K. Arora, J. Srivastava, L.M. Bharadwaj, Translocation and toxicity of docetaxel multi-walled carbon nanotube conjugates in mammalian breast cancer cells. J. Biomed. Nanotechnol. 10, 3601–3609 (2014)CrossRefGoogle Scholar
  5. N. Arya, A. Arora, K. Vasu, A.K. Sood, D.S. Katti, Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: a reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale 5, 2818–2829 (2013)CrossRefGoogle Scholar
  6. C. Bao, F. Tian, G. Estrada, Improved visualisation of internalised carbon nanotubes by maximising cell spreading on nanostructured substrates. Nano Biomed. Eng. 2, 201–207 (2010)CrossRefGoogle Scholar
  7. M. Bhattacharya, S. Hong, D. Lee, T. Cui, S.M. Goyal, Carbon nanotube based sensors for the detection of viruses. Sens. Actuat. B: Chem. 155, 67–74 (2011)CrossRefGoogle Scholar
  8. M. Bottini, N. Rosato, N. Bottini, PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead. Biomacromol 12, 3381–3393 (2011)CrossRefGoogle Scholar
  9. G. Chen, Y. He, X. Wu, Y. Zhang, C. Luo, P. Jing, In vitro and in vivo studies of pirarubicin-loaded SWNT for the treatment of bladder cancer. Braz. J. Med. Biol. Res. 45, 771–776 (2012)CrossRefGoogle Scholar
  10. P.K. Chopdey, R.K. Tekade, N.K. Mehra, N. Mody, N.K. Jain, Glycyrrhizin conjugated dendrimer and multi-walled carbon nanotubes for liver specific delivery of doxorubicin. J. Nanosci. Nanotechnol. 15, 1088–1100 (2015)CrossRefGoogle Scholar
  11. D. Cui, H. Zhang, J. Sheng, Z. Wang, A. Toru, R. He, O. Tetsuya, F. Gao, H. Cho, S. Cho, Effects of CdSe/ZnS quantum dots covered multi-walled carbon nanotubes on murine embryonic stem cells. Nano Biomed. Eng. 2, 236–244 (2010)CrossRefGoogle Scholar
  12. S. Dhar, Z. Liu, J. Thomale, H.J. Dai, S.J. Lippard,  Targeted single walled carbon nanotubes-mediated Pt(iv) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 130, 11467–11476 (2018)CrossRefGoogle Scholar
  13. Z. Fan, P.P. Fu, H. Yu, P.C. Ray, Theranostic nanomedicine for cancer detection and treatment. J. Food Drug Anal. 22, 3–17 (2014)CrossRefGoogle Scholar
  14. R.P. Feazell, N. Nakayama-Ratchford, H. Dai, S.J. Lippard, Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design. J. Am. Chem. Soc. 129, 8438–8439 (2007)CrossRefGoogle Scholar
  15. M. Ferrari, Cancer nanotechnology: opportunities and challenges. Nat. Revi. Cancer 5, 161 (2005)CrossRefGoogle Scholar
  16. C. Guo, W.T. Al-Jamal, F.M. Toma, A. Bianco, M. Prato, K.T. Al-Jamal, K. Kostarelos, Design of cationic multiwalled carbon nanotubes as efficient siRNA vectors for lung cancer xenograft eradication. Bioconjug. Chem. 26, 1370–1379 (2015)CrossRefGoogle Scholar
  17. M.S. Hasnain, S.A. Ahmad, M.N. Hoda, S. Rishishwar, P. Rishishwar, A.K. Nayak. Stimuli-responsive carbon nanotubes for targeted drug delivery, in Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Vol. 2: Advanced Nanocarriers for Therapeutics (Elsevier, 2019), pp. 321–344Google Scholar
  18. E. Heister, V. Neves, C. Tîlmaciu, K. Lipert, V.S. Beltrán, H.M. Coley, S.R.P. Silva, J. McFadden, Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47, 2152–2160 (2009)CrossRefGoogle Scholar
  19. B. Hormozi, Application of nanoparticles in cancer treatment, in Advanced Theranostic Materials (Wiley, 2015), pp. 37–65Google Scholar
  20. P. Huang, C. Zhang, C. Xu, L. Bao, Z. Li, Preparation and characterization of near-infrared region absorption enhancer carbon nanotubes hybridmaterials. Nano Biomed. Eng. 2, 225–230 (2010)CrossRefGoogle Scholar
  21. G.T. Javan, S.J. Finley, I. Can, A. Salhotra, A. Malhotra, S. Soni, Aberrant signaling pathways: hallmark of cancer cells and target for nanotherapeutics. Adv. Theranostic Mater. 2015, 1–35 (2015)Google Scholar
  22. J. Ji, M. Liu, Y. Meng, R. Liu, Y. Yan, J. Dong, Z. Guo, C. Ye, Experimental study of magnetic multi-walled carbon nanotube-doxorubicin conjugate in a lymph node metastatic model of breast cancer. Med. Sci. Monit. 22, 2363–2373 (2016)CrossRefGoogle Scholar
  23. N.W.S. Kam, M. O’Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. 102, 11600–11605 (2005)CrossRefGoogle Scholar
  24. A. Karmakar, S.M. Bratton, E. Dervishi, A. Ghosh, M. Mahmood, Y. Xu, L.M. Saeed, T. Mustafa, D. Casciano, A. Radominska-Pandya, Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int. J. Nnanomed. 6, 1045 (2011)Google Scholar
  25. P.-C. Lee, Y.-C. Chiou, J.-M. Wong, C.-L. Peng, M.-J. Shieh, Targeting colorectal cancer cells with single-walled carbon nanotubes conjugated to anticancer agent SN-38 and EGFR antibody. Biomaterials 34, 8756–8765 (2013)CrossRefGoogle Scholar
  26. J. Li, F. Yang, G. Guo, D. Yang, J. Long, D. Fu, J. Lu, C. Wang, Preparation of biocompatible multi-walled carbon nanotubes as potential tracers for sentinel lymph nodes. Polymer Int. 59, 169–174 (2010)CrossRefGoogle Scholar
  27. R. Li, Wu Ra, L. Zhao, Z. Hu, S. Guo, X. Pan, H. Zou, Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon 49, 1797–1805 (2011)CrossRefGoogle Scholar
  28. F. Liang, B. Chen, A review on biomedical applications of single-walled carbon nanotubes. Curr. Med. Chem. 17, 10–24 (2010)CrossRefGoogle Scholar
  29. L. Liu, X. Ye, K. Wu, R. Han, Z. Zhou, T. Cui, Humidity sensitivity of multi-walled carbon nanotube networks deposited by dielectrophoresis. Sensors 9, 1714–1721 (2009a)CrossRefGoogle Scholar
  30. Z. Liu, C. Davis, W. Cai, L. He, X. Chen, H. Dai, Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. 105, 1410–1415 (2008)CrossRefGoogle Scholar
  31. Z. Liu, S. Tabakman, K. Welsher, H. Dai, Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85–120 (2009b)CrossRefGoogle Scholar
  32. Y.-J. Lu, K.-C. Wei, C.-C.M. Ma, S.-Y. Yang, J.-P. Chen, Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf. B: Biointerfaces 89, 1–9 (2012)CrossRefGoogle Scholar
  33. S. Mahajan, A. Patharkar, K. Kuche, R. Maheshwari, P.K. Deb, K. Kalia, R.K. Tekade, Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. Int. J. Pharm. 548, 540–558 (2018)CrossRefGoogle Scholar
  34. L. Meng, Z. Ji, G. Lin, et al., Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery systems. J. Colloids. Interaf. Sci. 365, 143–149 (2012)Google Scholar
  35. M.R. McDevitt, D. Chattopadhyay, J.S. Jaggi, R.D. Finn, P.B. Zanzonico, C. Villa, D. Rey, J. Mendenhall, C.A. Batt, J.T. Njardarson, PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS ONE 2, e907 (2007)CrossRefGoogle Scholar
  36. J. Meng, J. Meng, J. Duan, H. Kong, L. Li, C. Wang, S. Xie, S. Chen, N. Gu, H. Xu, Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 4, 1364–1370 (2008)CrossRefGoogle Scholar
  37. M. Mohammadi, Z. Salmasi, M. Hashemi, F. Mosaffa, K. Abnous, M. Ramezani, Single-walled carbon nanotubes functionalized with aptamer and piperazine–polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int. J. Pharm. 485, 50–60 (2015)CrossRefGoogle Scholar
  38. C.L. Morgan, D.J. Newman, C. Price, Immunosensors: technology and opportunities in laboratory medicine. Clin. Chem. 42, 193–209 (1996)Google Scholar
  39. T. Murakami, J. Fan, M. Yudasaka, S. Iijima, K. Shiba, Solubilization of single-wall carbon nanohorns using a PEG—doxorubicin conjugate. Mol. Pharm. 3, 407–414 (2006)CrossRefGoogle Scholar
  40. S. Nimesh, N. Gupta, R. Chandra, Cationic polymer based nanocarriers for delivery of therapeutic nucleic acids. J. Biomed. Nanotechnol. 7, 504–520 (2011)CrossRefGoogle Scholar
  41. Y. Oh, J.-O. Jin, J. Oh, Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells. Nanotechnology 28, 125101 (2017)CrossRefGoogle Scholar
  42. Z. Ou, B. Wu, D. Xing, F. Zhou, H. Wang, Y. Tang, Functional single-walled carbon nanotubes based on an integrin αvβ3 monoclonal antibody for highly efficient cancer cell targeting. Nanotechnology 20, 105102 (2009)CrossRefGoogle Scholar
  43. B. Pan, D. Cui, P. Xu, C. Ozkan, G. Feng, M. Ozkan, T. Huang, B. Chu, Q. Li, R. He, Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology 20, 125101 (2009)CrossRefGoogle Scholar
  44. S. Prakash, A.G. Kulamarva, Recent advances in drug delivery: potential and limitations of carbon nanotubes. Recent Pat. Drug Deliv. Formulation 1, 214–221 (2007)CrossRefGoogle Scholar
  45. S. Prakash, M. Malhotra, W. Shao, C. Tomaro-Duchesneau, S. Abbasi, Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug Deliv. Rev. 63, 1340–1351 (2011)CrossRefGoogle Scholar
  46. G. Prencipe, S.M. Tabakman, K. Welsher, Z. Liu, A.P. Goodwin, L. Zhang, J. Henry, H. Dai, PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 131, 4783–4787 (2009)CrossRefGoogle Scholar
  47. G. Qu, Y. Bai, Y. Zhang, Q. Jia, W. Zhang, B. Yan, The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon 47, 2060–2069 (2009)CrossRefGoogle Scholar
  48. J. Ren, S. Shen, D. Wang, Z. Xi, L. Guo, Z. Pang, Y. Qian, X. Sun, X. Jiang, The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 33, 3324–3333 (2012)CrossRefGoogle Scholar
  49. G. Risi, N. Bloise, D. Merli, A. Icaro-Cornaglia, A. Profumo, M. Fagnoni, E. Quartarone, M. Imbriani, L. Visai, In vitro study of multiwall carbon nanotubes (MWCNTs) with adsorbed mitoxantrone (MTO) as a drug delivery system to treat breast cancer. Rsc Advances 4, 18683–18693 (2014)CrossRefGoogle Scholar
  50. P.C. Rodriguez, M.S. Ernstoff, C. Hernandez, M. Atkins, J. Zabaleta, R. Sierra, A.C. Ochoa, Arginase I—producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69, 1553–1560 (2009)CrossRefGoogle Scholar
  51. A. Romano, C. Conticello, M. Cavalli, C. Vetro, A. La Fauci, N.L. Parrinello, F. Di Raimondo, Immunological dysregulation in multiple myeloma microenvironment. BioMed. Res. Int. 2014 (2014a)Google Scholar
  52. A. Romano, C. Vetro, G. Caocci, M. Greco, N.L. Parrinello, F. Di Raimondo, G. La Nasa, Immunological deregulation in classic Hodgkin lymphoma. Mediterr. J. Hematol. Infect. Dis. 6 (2014b)Google Scholar
  53. L.M. Saeed, M. Mahmood, S.J. Pyrek, T. Fahmi, Y. Xu, T. Mustafa, Z.A. Nima, S.M. Bratton, D. Casciano, E. Dervishi, Single-walled carbon nanotube and graphene nanodelivery of gambogic acid increases its cytotoxicity in breast and pancreatic cancer cells. J. Appl. Toxicol. 34, 1188–1199 (2014)CrossRefGoogle Scholar
  54. N. Sanoj Rejinold, M. Muthunarayanan, K. Chennazhi, S. Nair, R. Jayakumar, Curcumin loaded fibrinogen nanoparticles for cancer drug delivery. J. Biomed. Nanotechnol. 7, 521–534 (2011)CrossRefGoogle Scholar
  55. D.J. Shirale, M.A. Bangar, M. Park, M.V. Yates, W. Chen, N.V. Myung, A. Mulchandani, Label-free chemiresistive immunosensors for viruses. Environ. Sci. Technol. 44, 9030–9035 (2010)CrossRefGoogle Scholar
  56. N. Sinha, J.-W. Yeow, Carbon nanotubes for biomedical applications. IEEE Trans. Nanobiosci. 4, 180–195 (2005)CrossRefGoogle Scholar
  57. S.M. Taghdisi, P. Lavaee, M. Ramezani, K. Abnous, Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur. J. Pharm. Biopharm. 77, 200–206 (2011)CrossRefGoogle Scholar
  58. V.S. Thakare, M. Das, A.K. Jain, S. Patil, S. Jain, Carbon nanotubes in cancer theragnosis. Nanomedicine 5, 1277–1301 (2010)CrossRefGoogle Scholar
  59. S.V. Torti, F. Byrne, O. Whelan, N. Levi, B. Ucer, M. Schmid, F.M. Torti, S. Akman, J. Liu, P.M. Ajayan, Thermal ablation therapeutics based on CNx multi-walled nanotubes. Int. J. Nanomed. 2, 707 (2007)Google Scholar
  60. J.V. Veetil, K. Ye, Development of immunosensors using carbon nanotubes. Biotechnol. Prog. 23, 517–531 (2007)CrossRefGoogle Scholar
  61. Y. Xiao, X. Gao, O. Taratula, S. Treado, A. Urbas, R.D. Holbrook, R.E. Cavicchi, C.T. Avedisian, S. Mitra, R. Savla, Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer 9, 351 (2009)CrossRefGoogle Scholar
  62. F. Yang, C. Jin, D. Yang, Y. Jiang, J. Li, Y. Di, J. Hu, C. Wang, Q. Ni, D. Fu, Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur. J. Cancer 47, 1873–1882 (2011)CrossRefGoogle Scholar
  63. Z. Yang, Y. Zhang, Y. Yang, L. Sun, D. Han, H. Li, C. Wang, Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomed.: Nanotechnol. Biolo. Med. 6, 427–441 (2010)CrossRefGoogle Scholar
  64. B. Yu, L. Tan, R. Zheng, H. Tan, L. Zheng, Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes. Mater. Sci. Eng., C 68, 579–584 (2016)CrossRefGoogle Scholar
  65. X. Zhang, L. Meng, Q. Lu, Z. Fei, P.J. Dyson, Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30, 6041–6047 (2009)CrossRefGoogle Scholar
  66. F. Zhou, X. Da, Z. Ou, B. Wu, D.E. Resasco, W.R. Chen, Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 14, 021009 (2009)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PharmacyShri Venkateshwara UniversityAmrohaIndia
  2. 2.Department of PharmaceuticsSeemanta Institute of Pharmaceutical ScienceMayurbhanjIndia

Personalised recommendations