Toxicity Consideration of Carbon Nanotubes

  • Md Saquib HasnainEmail author
  • Amit Kumar Nayak
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Carbon nanotubes (CNTs) have unique features compared to the bulk fabrics, along with elevated exponential aspect ratio causing toxicity. The decrease in size causes the aggregation and its atmosphere (i.e. biological elements) is more reactive to itself.


  1. M.F. Abu-Hijleh, O.A. Habbal, S.T. Moqattash, The role of the diaphragm in lymphatic absorption from the peritoneal cavity. J. Anat. 186, 453 (1995)Google Scholar
  2. K. Ajima, M. Yudasaka, T. Murakami, A. Maigné, K. Shiba, S. Iijima, Carbon nanohorns as anticancer drug carriers. Mol. Pharm. 2, 475–480 (2005)CrossRefGoogle Scholar
  3. C.T. Albanese, M. Cardona, S.D. Smith, S. Watkins, A.G. Kurkchubasche, I. Ulman, R.L. Simmons, M.I. Rowe, Role of intestinal mucus in transepithelial passage of bacteria across the intact ileum in vitro. Surgery 116, 76–82 (1994)Google Scholar
  4. F. Araújo, N. Shrestha, M.-A. Shahbazi, P. Fonte, E.M. Mäkilä, J.J. Salonen, J.T. Hirvonen, P.L. Granja, H.A. Santos, B. Sarmento, The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials 35, 9199–9207 (2014)CrossRefGoogle Scholar
  5. S. Arora, J.M. Rajwade, K.M. Paknikar, Nanotoxicology and in vitro studies: the need of the hour. Toxicol. Appl. Pharmacol. 258, 151–165 (2012)CrossRefGoogle Scholar
  6. S.H. Bakhru, S. Furtado, A.P. Morello, E. Mathiowitz, Oral delivery of proteins by biodegradable nanoparticles. Adv. Drug Deliv. Rev. 65, 811–821 (2013)CrossRefGoogle Scholar
  7. P. Baldrick, The safety of chitosan as a pharmaceutical excipient. Regul. Toxicol. Pharmacol. 56, 290–299 (2010)CrossRefGoogle Scholar
  8. S. Beg, M. Rizwan, A.M. Sheikh, M.S. Hasnain, K. Anwer, K. Kohli, Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J. Pharm. Pharmacol. 63, 141–163 (2011)CrossRefGoogle Scholar
  9. M. Bottini, S. Bruckner, K. Nika, N. Bottini, S. Bellucci, A. Magrini, A. Bergamaschi, T. Mustelin, Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol. Lett. 160, 121–126 (2006)CrossRefGoogle Scholar
  10. D. Brown, I. Kinloch, U. Bangert, A. Windle, D. Walter, G. Walker, C. Scotchford, K. Donaldson, V. Stone, An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 45, 1743–1756 (2007)CrossRefGoogle Scholar
  11. M.-C. Chen, K. Sonaje, K.-J. Chen, H.-W. Sung, A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials 32, 9826–9838 (2011)CrossRefGoogle Scholar
  12. G.N. Chiu, M.-Y. Wong, L.-U. Ling, I.M. Shaikh, K.-B. Tan, A. Chaudhury, B.-J. Tan, Lipid-based nanoparticulate systems for the delivery of anti-cancer drug cocktails: implications on pharmacokinetics and drug toxicities. Curr. Drug Metab. 10, 861–874 (2009)CrossRefGoogle Scholar
  13. B.F. Choonara, Y.E. Choonara, P. Kumar, D. Bijukumar, L.C. du Toit, V. Pillay, A review of advanced oral drug delivery technologies facilitating the protection and absorption of protein and peptide molecules. Biotechnol. Adv. 32, 1269–1282 (2014)CrossRefGoogle Scholar
  14. R. Cullen, B. Miller, S. Clark, J. Davis, Tumorigenicity of cellulose fibers injected into the rat peritoneal cavity. Inhalation Toxicol. 14, 685–703 (2002)CrossRefGoogle Scholar
  15. S. Das, A. Chaudhury, Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. Aaps PharmSciTech 12, 62–76 (2011)CrossRefGoogle Scholar
  16. A. des Rieux, V. Fievez, M. Garinot, Y-J. Schneider, V. Préat, Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Release 116, 1–27 (2006)CrossRefGoogle Scholar
  17. A. des Rieux, V. Pourcelle, PD. Cani, J. Marchand-Brynaert, V. Préat, Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv. Drug Deliv. Rev. 65, 833–844 (2013)CrossRefGoogle Scholar
  18. L.M. Ensign, R. Cone, J. Hanes, Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64, 557–570 (2012)CrossRefGoogle Scholar
  19. I. Fenoglio, E. Aldieri, E. Gazzano, F. Cesano, M. Colonna, D. Scarano, G. Mazzucco, A. Attanasio, Y. Yakoub, D. Lison, Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem. Res. Toxicol. 25, 74–82 (2011)CrossRefGoogle Scholar
  20. M. Foldvari, M. Bagonluri, Carbon nanotubes as functional excipients for nanomedicines: i. Pharmaceutical properties. Nanomed. Nanotechnol., Biol. Med. 4, 173–182 (2008)CrossRefGoogle Scholar
  21. P. Fonte, F. Araújo, S. Reis, B. Sarmento, Oral insulin delivery: how far are we? J. Diabetes Sci. Technol. 7, 520–531 (2013)CrossRefGoogle Scholar
  22. X. He, S.-H. Young, D. Schwegler-Berry, W.P. Chisholm, J.E. Fernback, Q. Ma, Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem. Res. Toxicol. 24, 2237–2248 (2011)CrossRefGoogle Scholar
  23. E. Heister, V. Neves, C. Tîlmaciu, K. Lipert, V.S. Beltrán, H.M. Coley, S.R.P. Silva, J. McFadden, Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47, 2152–2160 (2009)CrossRefGoogle Scholar
  24. H. Hillaireau, P. Couvreur, Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66, 2873–2896 (2009)CrossRefGoogle Scholar
  25. J. Hochman, P. Artursson, Mechanisms of absorption enhancement and tight junction regulation. J. Control. Release 29, 253–267 (1994)CrossRefGoogle Scholar
  26. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)CrossRefGoogle Scholar
  27. A.K. Jain, N.K. Swarnakar, C. Godugu, R.P. Singh, S. Jain, The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 32, 503–515 (2011)CrossRefGoogle Scholar
  28. O. Kamstrup, A. Ellehauge, C. Collier, J. Davis, Carcinogenicity studies after intraperitoneal injection of two types of stone wool fibres in rats. Ann. Occup. Hyg. 46, 135–142 (2002)Google Scholar
  29. A.B. Kane, Animal models of malignant mesothelioma. Inhal. Toxicol. 18, 1001–1004 (2006)CrossRefGoogle Scholar
  30. J. Kayat, V. Gajbhiye, R.K. Tekade, N.K. Jain, Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomed. Nanotechnol. Biol. Med. 7, 40–49 (2011)CrossRefGoogle Scholar
  31. T. Kean, M. Thanou, Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 62, 3–11 (2010)CrossRefGoogle Scholar
  32. J. Khan, Y. Iiboshi, L. Cui, M. Wasa, A. Okada, Role of intestinal mucus on the uptake of latex beads by Peyer’s patches and on their transport to mesenteric lymph nodes in rats. J. Parenter. Enter. Nutr. 23, 19–23 (1999)CrossRefGoogle Scholar
  33. W.G. Kreyling, W. Möller, M. Semmler-Behnke, G. Oberdörster, Particle dosimetry: deposition and clearance from the respiratory tract and translocation towards extrapulmonary sites. Part. Toxicol. 2007 (2007)Google Scholar
  34. A. Lamprecht, U. Schäfer, C.-M. Lehr, Size-dependent bioadhesion of micro-and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res. 18, 788–793 (2001)CrossRefGoogle Scholar
  35. X. Li, S. Guo, C. Zhu, Q. Zhu, Y. Gan, J. Rantanen, U.L. Rahbek, L. Hovgaard, M. Yang, Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Biomaterials 34, 9678–9687 (2013)CrossRefGoogle Scholar
  36. F. Liddell, K. Miller, Mineral fibers and health (CRC Press, Boca Raton, 1991)Google Scholar
  37. D. Liu, L. Wang, Z. Wang, A. Cuschieri, Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nanotubes. Nanoscale Res. Lett. 7, 361 (2012)CrossRefGoogle Scholar
  38. A. Magrez, S. Kasas, V. Salicio, N. Pasquier, J.W. Seo, M. Celio, S. Catsicas, B. Schwaller, L. Forró, Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6, 1121–1125 (2006)CrossRefGoogle Scholar
  39. D.J. McClements, Edible lipid nanoparticles: digestion, absorption, and potential toxicity. Prog. Lipid Res. 52, 409–423 (2013)CrossRefGoogle Scholar
  40. J. Miyawaki, M. Yudasaka, T. Azami, Y. Kubo, S. Iijima, Toxicity of single-walled carbon nanohorns. ACS Nano 2, 213–226 (2008)CrossRefGoogle Scholar
  41. J. Muller, I. Decordier, P.H. Hoet, N. Lombaert, L. Thomassen, F. Huaux, D. Lison, M. Kirsch-Volders, Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29, 427–433 (2008a)CrossRefGoogle Scholar
  42. J. Muller, M. Delos, N. Panin, V. Rabolli, F. Huaux, D. Lison, Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol. Sci. 110, 442–448 (2009)CrossRefGoogle Scholar
  43. J. Muller, F. Huaux, A. Fonseca, J.B. Nagy, N. Moreau, M. Delos, E. Raymundo-Pinero, F. Béguin, M. Kirsch-Volders, I. Fenoglio, Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem. Res. Toxicol. 21, 1698–1705 (2008b)CrossRefGoogle Scholar
  44. F.A. Murphy, C.A. Poland, R. Duffin, K.T. Al-Jamal, H. Ali-Boucetta, A. Nunes, F. Byrne, A. Prina-Mello, Y. Volkov, S. Li, Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am. J. Pathol. 178, 2587–2600 (2011)CrossRefGoogle Scholar
  45. F.A. Murphy, A. Schinwald, C.A. Poland, K. Donaldson, The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells. Part. Fibre Toxicol. 9, 8 (2012)CrossRefGoogle Scholar
  46. H. Nagai, Y. Okazaki, S.H. Chew, N. Misawa, Y. Yamashita, S. Akatsuka, T. Ishihara, K. Yamashita, Y. Yoshikawa, H. Yasui, Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc. Natl. Acad. Sci. 108, E1330–E1338 (2011)CrossRefGoogle Scholar
  47. M. Nahar, D. Mishra, V. Dubey, N.K. Jain, Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomed. Nanotechnol. Biol. Med. 4, 252–261 (2008)CrossRefGoogle Scholar
  48. S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593–1597 (2009)CrossRefGoogle Scholar
  49. S. Perwez Hussain, C.C. Harris, Inflammation and cancer: an ancient link with novel potentials. Int. J. Cancer 121, 2373–2380 (2007)CrossRefGoogle Scholar
  50. L. Plapied, N. Duhem, A. des Rieux, V. Préat, Fate of polymeric nanocarriers for oral drug delivery. Curr. Opin. Colloid Interface Sci. 16, 228–237 (2011)CrossRefGoogle Scholar
  51. C.A. Poland, R. Duffin, I. Kinloch, A. Maynard, W.A. Wallace, A. Seaton, V. Stone, S. Brown, W. MacNee, K. Donaldson, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423 (2008)CrossRefGoogle Scholar
  52. E.M. Pridgen, F. Alexis, O.C. Farokhzad, Polymeric nanoparticle technologies for oral drug delivery. Clin. Gastroenterol. Hepatol. 12, 1605–1610 (2014)CrossRefGoogle Scholar
  53. K. Pulskamp, S. Diabaté, H.F. Krug, Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol. Lett. 168, 58–74 (2007)CrossRefGoogle Scholar
  54. N. Rahmanian, H. Hamishehkar, J.E.N. Dolatabadi, N. Arsalani, Nano graphene oxide: a novel carrier for oral delivery of flavonoids. Colloids Surf., B: Biointerfaces 123, 331–338 (2014)CrossRefGoogle Scholar
  55. C.P. Reis, I.V. Figueiredo, R.A. Carvalho, J. Jones, P. Nunes, A.F. Soares, C.F. Silva, A.J. Ribeiro, F.J. Veiga, C. Damgé, Toxicological assessment of orally delivered nanoparticulate insulin. Nanotoxicology 2, 205–217 (2008)CrossRefGoogle Scholar
  56. M. Rekha, C.P. Sharma, Oral delivery of therapeutic protein/peptide for diabetes—future perspectives. Int. J. Pharm. 440, 48–62 (2013)CrossRefGoogle Scholar
  57. J.M. Rice, R.M. Kovatch, L.M. Anderson, Intraperitoneal mesotheliomas induced in mice by a polycyclic aromatic hydrocarbon. J. Toxicol. Environ. Health, Part Curr. Issues 27, 153–160 (1989)CrossRefGoogle Scholar
  58. M. Roller, F. Pott, K. Kamino, G.-H. Althoff, B. Bellmann, Results of current intraperitoneal carcinogenicity studies with mineral and vitreous fibres. Exp. Toxicol. Pathol. 48, 3–12 (1996)CrossRefGoogle Scholar
  59. R.K. Saxena, W. Williams, J.K. Mcgee, M.J. Daniels, E. Boykin, M. Ian Gilmour, Enhanced in vitro and in vivo toxicity of poly-dispersed acid-functionalized single-wall carbon nanotubes. Nanotoxicology 1, 291–300 (2007)CrossRefGoogle Scholar
  60. M. Schenk, C. Mueller, The mucosal immune system at the gastrointestinal barrier. Best Pract. Res. Clin. Gastroenterol. 22, 391–409 (2008)CrossRefGoogle Scholar
  61. A. Schinwald, F.A. Murphy, A. Prina-Mello, C.A. Poland, F. Byrne, D. Movia, J.R. Glass, J.C. Dickerson, D.A. Schultz, C.E. Jeffree, The threshold length for fiber-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol. Sci. 128, 461–470 (2012)CrossRefGoogle Scholar
  62. M.-A. Shahbazi, P.V. Almeida, E.M. Mäkilä, M.H. Kaasalainen, J.J. Salonen, J.T. Hirvonen, H.A. Santos, Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials 35, 7488–7500 (2014)CrossRefGoogle Scholar
  63. K. Sonaje, E.-Y. Chuang, K.-J. Lin, T.-C. Yen, F.-Y. Su, M.T. Tseng, H.-W. Sung, Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: microscopic, ultrastructural, and computed-tomographic observations. Mol. Pharm. 9, 1271–1279 (2012)CrossRefGoogle Scholar
  64. L. Tabet, C. Bussy, N. Amara, A. Setyan, A. Grodet, M.J. Rossi, J.-C. Pairon, J. Boczkowski, S. Lanone, Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells. J. Toxicol. Environ. Health, Part A 72, 60–73 (2008)CrossRefGoogle Scholar
  65. L. Tabet, C. Bussy, A. Setyan, A. Simon-Deckers, M.J. Rossi, J. Boczkowski, S. Lanone, Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity. Part. Fibre Toxicol. 8, 3 (2011)CrossRefGoogle Scholar
  66. H. Tong, J.K. McGee, R.K. Saxena, U.P. Kodavanti, R.B. Devlin, M.I. Gilmour, Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice. Toxicol. Appl. Pharmacol. 239, 224–232 (2009)CrossRefGoogle Scholar
  67. K. Unfried, C. Schürkes, J. Abel, Distinct spectrum of mutations induced by crocidolite asbestos: clue for 8-hydroxydeoxyguanosine-dependent mutagenesis in vivo. Can. Res. 62, 99–104 (2002)Google Scholar
  68. S. Vardharajula, S.Z. Ali, P.M. Tiwari, E. Eroğlu, K. Vig, V.A. Dennis, S.R. Singh, Functionalized carbon nanotubes: biomedical applications. Int. J. Nanomed. 7, 5361 (2012)Google Scholar
  69. O. Vittorio, V. Raffa, A. Cuschieri, Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomed. Nanotechnol. Biol. Med. 5, 424–431 (2009)CrossRefGoogle Scholar
  70. X. Wang, G. Jia, H. Wang, H. Nie, L. Yan, X. Deng, S. Wang, Diameter effects on cytotoxicity of multi-walled carbon nanotubes. J. Nanosci. Nanotechnol. 9, 3025–3033 (2009)CrossRefGoogle Scholar
  71. X. Wang, T. Xia, M.C. Duch, Z. Ji, H. Zhang, R. Li, B. Sun, S. Lin, H. Meng, Y.-P. Liao, Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. Nano Lett. 12, 3050–3061 (2012)CrossRefGoogle Scholar
  72. M. Werle, H. Takeuchi, A. Bernkop-Schnürch, Modified chitosans for oral drug delivery. J. Pharm. Sci. 98, 1643–1656 (2009)CrossRefGoogle Scholar
  73. K. Yamashita, Y. Yoshioka, K. Higashisaka, Y. Morishita, T. Yoshida, M. Fujimura, H. Kayamuro, H. Nabeshi, T. Yamashita, K. Nagano, Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 33, 276–280 (2010)CrossRefGoogle Scholar
  74. T.-H. Yeh, L.-W. Hsu, M.T. Tseng, P.-L. Lee, K. Sonjae, Y.-C. Ho, H.-W. Sung, Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32, 6164–6173 (2011)CrossRefGoogle Scholar
  75. Y. Yun, Y.W. Cho, K. Park, Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv. Drug Deliv. Rev. 65, 822–832 (2013)CrossRefGoogle Scholar
  76. Y. Zhang, Y. Bai, B. Yan, Functionalized carbon nanotubes for potential medicinal applications. Drug Discov. Today 15, 428–435 (2010)CrossRefGoogle Scholar
  77. H. Zhou, Q. Mu, N. Gao, A. Liu, Y. Xing, S. Gao, Q. Zhang, G. Qu, Y. Chen, G. Liu, A nano-combinatorial library strategy for the discovery of nanotubes with reduced protein-binding, cytotoxicity, and immune response. Nano Lett. 8, 859–865 (2008)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PharmacyShri Venkateshwara UniversityAmrohaIndia
  2. 2.Department of PharmaceuticsSeemanta Institute of Pharmaceutical ScienceMayurbhanjIndia

Personalised recommendations