Absorption and Transportation of Carbon Nanotubes

  • Md Saquib HasnainEmail author
  • Amit Kumar Nayak
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


When CNTs are administered through distinct paths, there are distinct methods of absorption and transportation. The absorbed CNTs are transferred by blood or lymphatic circulation from the administration locations to the appropriate locations. Absorption is the first important step for CNTs after oral administration.


  1. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002)CrossRefGoogle Scholar
  2. M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997)CrossRefGoogle Scholar
  3. A.W. Bushmaker, V.V. Deshpande, M.W. Bockrath, S.B. Cronin, Direct observation of mode selective electron–phonon coupling in suspended carbon nanotubes. Nano Lett. 7, 3618–3622 (2007)CrossRefGoogle Scholar
  4. S. Chiashi, Y. Murakami, Y. Miyauchi, S. Maruyama, Temperature dependence of Raman scattering from single-walled carbon nanotubes: undefined radial breathing mode peaks at high temperatures. Jpn. J. Appl. Phys. 47, 2010 (2008)CrossRefGoogle Scholar
  5. T.-Y. Choi, D. Poulikakos, J. Tharian, U. Sennhauser, Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method. Nano Lett. 6, 1589–1593 (2006)CrossRefGoogle Scholar
  6. H. Dai, E.W. Wong, C.M. Lieber, Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 272, 523–526 (1996)CrossRefGoogle Scholar
  7. B.G. Demczyk, Y.M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, R. Ritchie, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng.: A 334, 173–178 (2002)CrossRefGoogle Scholar
  8. I.-K. Hsu, R. Kumar, A. Bushmaker, S.B. Cronin, M.T. Pettes, L. Shi, T. Brintlinger, M.S. Fuhrer, J. Cumings, Optical measurement of thermal transport in suspended carbon nanotubes. Appl. Phys. Lett. 92, 063119 (2008)CrossRefGoogle Scholar
  9. M. Jinno, Y. Ando, S. Bandow, J. Fan, M. Yudasaka, S. Iijima, Raman scattering study for heat-treated carbon nanotubes: the origin of ≈1855 cm −1 Raman band. Chem. Phys. Lett. 418, 109–114 (2006)CrossRefGoogle Scholar
  10. A. Jorio, M. Pimenta, A. Souza Filho, R. Saito, G. Dresselhaus, M. Dresselhaus, Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. 5, 139 (2003)CrossRefGoogle Scholar
  11. A. Jorio, R. Saito, J. Hafner, C. Lieber, D. Hunter, T. McClure, G. Dresselhaus, M. Dresselhaus, Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118 (2001)CrossRefGoogle Scholar
  12. A. Liñán, V.N. Kurdyumov, Laminar free convection induced by a line heat source, and heat transfer from wires at small Grashof numbers. J. Fluid Mech. 362, 199–227 (1998)CrossRefGoogle Scholar
  13. J.-H. Liu, S.-T. Yang, H. Wang, Y. Liu, Advances in biodistribution study and tracing methodology of carbon nanotubes. J. Nanosci. Nanotechnol. 10, 8469–8481 (2010)CrossRefGoogle Scholar
  14. D. Mann, E. Pop, J. Cao, Q. Wang, K. Goodson, H. Dai, Thermally and molecularly stimulated relaxation of hot phonons in suspended carbon nanotubes. J. Phys. Chem. B 110, 1502–1505 (2006)CrossRefGoogle Scholar
  15. J. Misewich, R. Martel, P. Avouris, J. Tsang, S. Heinze, J. Tersoff, Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003)CrossRefGoogle Scholar
  16. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008)CrossRefGoogle Scholar
  17. E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai, Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 95, 155505 (2005)CrossRefGoogle Scholar
  18. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006)CrossRefGoogle Scholar
  19. N.R. Raravikar, P. Keblinski, A.M. Rao, M.S. Dresselhaus, L.S. Schadler, P.M. Ajayan, Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Phys. Rev. 66, 235424 (2002)CrossRefGoogle Scholar
  20. R.S. Ruoff, D.C. Lorents, Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995)CrossRefGoogle Scholar
  21. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, A. Majumdar, Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 125, 881–888 (2003)CrossRefGoogle Scholar
  22. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L. Geerligs, C. Dekker, Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997)CrossRefGoogle Scholar
  23. M.J. Treacy, T. Ebbesen, J. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996)CrossRefGoogle Scholar
  24. S. Uryu, T. Ando, Exciton absorption of perpendicularly polarized light in carbon nanotubes. Phys. Rev. B 74, 155411 (2006)CrossRefGoogle Scholar
  25. C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PharmacyShri Venkateshwara UniversityAmrohaIndia
  2. 2.Department of PharmaceuticsSeemanta Institute of Pharmaceutical ScienceMayurbhanjIndia

Personalised recommendations