Effect of Defects on Pipe Bending Behavior

  • Maosheng ZhengEmail author
  • Zhifu Yin
  • Haipeng Teng
  • Jiaojiao Liu
  • Yi Wang


The features of corrosive defects and their effects on conventional properties of pipeline materials are provided first, and then the effect of diffusive defects on pipe bending behavior and the assessments for the limit bending moment of localized corrosive pipeline are comparatively presented in this chapter.


  1. 1.
    Timmins PF (1997) Solutions to hydrogen attack in steel. ASM International Materials Park, USA, pp 1–10Google Scholar
  2. 2.
    Mok DR, Pick RJ, Glover AG (1990) Behavior of line pipe with long external corrosion. Mater Performance 29:75–79Google Scholar
  3. 3.
    Ahammed M (1998) Probability estimation of remaining life of a pipeline in the presence of active corrosion defect. Int J Press Pip 75:321–329CrossRefGoogle Scholar
  4. 4.
    Zhao XW, Luo JH, Zheng M, Lu MX, Li HL (2002) A damage model for assessing pipeline safety in corrosion environments. Met Mater Int 8(5):479–485CrossRefGoogle Scholar
  5. 5.
    Zheng M, Zheng X (1991) Expression for predicting the elasticity modulus of materials reinforced by 2nd phase grains. Metall Trans A 22:507–511CrossRefGoogle Scholar
  6. 6.
    Zheng M, Luo ZJ, Zheng X (1992) The yielding behavior of materials with random voids. Chinese Sci Bull 37:512–516Google Scholar
  7. 7.
    Zheng M, Luo ZJ, Zheng X (1994) Intensity and toughness parameters of porous materials. Chinese Sci Bull 39:810–814Google Scholar
  8. 8.
    Zheng M, Luo JH, Zhao XW, Zhou G, Li HL (2004) Modified expression for estimating the limit bending moment of local corroded pipeline. Int J Press Vessels Pip 81:725–729CrossRefGoogle Scholar
  9. 9.
    ANI/ASME B31.G (1991) Manual for determining the remaining strength of corroded pipelineGoogle Scholar
  10. 10.
    CAN/CSA-Z184-M86 (1986) Gas pipeline system, Canadian Standards AssociationGoogle Scholar
  11. 11.
    Folias ES (1965) An axial crack in a pressurized cylindrical shell. Int J Fract 1(2):104–113Google Scholar
  12. 12.
    Anon (1999) DNV-RP-F101 corroded pipelines, Det NoritasGoogle Scholar
  13. 13.
    Klever FJ (1992) Burst strength of corroded pipe: flow stress revised. In: Offshore technology conference, Houston, Texas, May 4–7 1992Google Scholar
  14. 14.
    Klever FJ, Stewart G, van der Valik CAC (1995) New developments in burst strength predictions for locally corroded pipeline, 1995 OMAE, V. Pipeline Technology. ASMEGoogle Scholar
  15. 15.
    Fu B, Kirkwood MG (1995) Predicting failure pressure of internally corroded linepipe using the finite element methods, 1995 OMAE, V. Pipeline Technology. ASMEGoogle Scholar
  16. 16.
    Han LH, He SY, Wang YP, Liu CD (1999) Limit moment of local wall thinning in pipe under bending. Int J Press Vessels Pip 76:539–542CrossRefGoogle Scholar
  17. 17.
    Kanninen MF, Broek D, Hahn GT, Marschall CW, Rybicki EF, Wilkowski GM (1978) Toward an elastic fracture mechanics predictive capability for reactor piping. Nucl Eng Des 48:117–134CrossRefGoogle Scholar
  18. 18.
    Hauch S, Bai Y (1998) Use of finite element methods for the determination of local buckling strength. In: Proceedings of the 1998 international conference on offshore mechanics and Arctic Engineering, Lisbon, Portugal, 5–9 July 1998Google Scholar
  19. 19.
    Haagsma SC, Schaap D (1981) Collapse resistance of submarine line studies. Oil Gas J 2:86–95Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Maosheng Zheng
    • 1
    Email author
  • Zhifu Yin
    • 2
  • Haipeng Teng
    • 1
  • Jiaojiao Liu
    • 1
  • Yi Wang
    • 1
  1. 1.Northwest UniversityXi’anChina
  2. 2.Institute of Yanchang Petroleum Group Co. Ltd.Xi’anChina

Personalised recommendations