Advertisement

Effect of Magnesium Incorporation in Enzyme-Induced Carbonate Precipitation (EICP) to Improve Shear Strength of Soil

  • Alok ChandraEmail author
  • K. Ravi
Conference paper
  • 42 Downloads
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 56)

Abstract

Enzyme-induced carbonate precipitation (EICP) is a novel, bioinspired soil stabilization technique in which calcium carbonate (\({\text{CaCO}}_{3}\)) crystals are enzymatically precipitated to cement and link the soil grains, thereby improving the shear strength of the soil. This work aims to analyze the effect of incorporating \({\text{Mg}}^{{2+}}\) ions on crystal morphology and their direct influence on the mechanical properties of the soil. A beaker experiment conducted by mixing urea, urease enzyme and \({\text{MgCl}}_{2}\)/\({\text{CaCl}}_{2}\) in different molar ratios revealed that the increase in the \({{{\text{Mg}}^{{2+}}} \mathord{\left/{\vphantom {{{\text{Mg}}^{{2+}}} {{\text{Ca}}^{{2+}}}}} \right. \kern-0pt} {{\text{Ca}}^{2 + } }}\) molar ratio decreases the amount of precipitated mass. The soil specimens for unconfined compressive strength (UCS) test were prepared as per its maximum dry unit weight (\(\gamma_{\text{dmax}}\)), and an optimum solution content (\({\text{w}}_{\text{opt}}\)) consisting of urea, urease enzyme and \({\text{MgCl}}_{2}\)/\({\text{CaCl}}_{2}\) at various \({{{\text{Mg}}^{{2+}} }\mathord{\left/{\vphantom {{{\text{Mg}}^{2+}} {{\text{Ca}}^{2 + } }}} \right. \kern-0pt} {{\text{Ca}}^{2 + } }}\) molar ratio. Field-emission scanning electron microscopy (FESEM) and X-ray powder diffraction (XRD) tests performed on precipitated mass verify the influence of \({\text{Mg}}^{{2+}}\) ions on crystal morphology and the occurrence of other carbonates (dolomite) and polymorphs of \({\text{CaCO}}_{3}\). The results of the UCS tests show that the lower molar ratio of \({\text{Mg}}^{{2+}}\)/\({\text{Ca}}^{2 + }\) can significantly improve the undrained shear strength of the soil.

Keywords

EICP Precipitation Morphology Shear strength 

References

  1. 1.
    Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24(5):417–423CrossRefGoogle Scholar
  2. 2.
    van Paassen LA, Ghose R, van der Linden TJ, van der Star WR, van Loosdrecht MC (2010) Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J Geotech Geoenviron Eng 136(12):1721–1728CrossRefGoogle Scholar
  3. 3.
    Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in the natural environment, and their potential in biotechnology: a review. Frontiers Bioeng Biotech 4:4CrossRefGoogle Scholar
  4. 4.
    Nemati M, Voordouw G (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme Microbial Technol 33(5):635–642CrossRefGoogle Scholar
  5. 5.
    Dilrukshi RAN, Nakashima K, Kawasaki S (2018) Soil improvement using plant-derived urease-induced calcium carbonate precipitation. Soils Found 58(4):894–910CrossRefGoogle Scholar
  6. 6.
    Yasuhara H, Neupane D, Hayashi K, Okamura M (2012) Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils Found 52(3):539–549CrossRefGoogle Scholar
  7. 7.
    Neupane D, Yasuhara H, Kinoshita N, Unno T (2013) Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique. J Geotech Geoenviron Eng 139(12):2201–2211CrossRefGoogle Scholar
  8. 8.
    Putra H, Yasuhara H, Kinoshita N, Neupane D, Lu CW (2016) Effect of magnesium as substitute material in enzyme-mediated calcite precipitation for soil-improvement technique. Frontiers Bioeng Biotech 4:37CrossRefGoogle Scholar
  9. 9.
    Knorr B (2014) Enzyme-induced carbonate precipitation for the mitigation of fugitive dust. Arizona State UniversityGoogle Scholar
  10. 10.
    Hamdan N, Kavazanjian E Jr (2016) Enzyme-induced carbonate mineral precipitation for fugitive dust control. Géotechnique 66(7):546–555CrossRefGoogle Scholar
  11. 11.
    Al-Thawadi SM (2011) Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J Adv Sci Eng Res 1(1):98–114Google Scholar
  12. 12.
    Sondi I, Škapin SD, Salopek-Sondi B (2007) Biomimetic precipitation of nanostructured colloidal calcite particles by enzyme-catalyzed reaction in the presence of magnesium ions. Cryst Growth Des 8(2):435–441CrossRefGoogle Scholar
  13. 13.
    Almajed A, Khodadadi Tirkolaei H, Kavazanjian E Jr (2018) Baseline Investigation on Enzyme-Induced Calcium Carbonate Precipitation. J Geotech Geoenviron Eng 144(11):04018081CrossRefGoogle Scholar
  14. 14.
    Hamdan N, Kavazanjian Jr, E, O’Donnell S (2013) Carbonate cementation via plant derived urease. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering. ParisGoogle Scholar
  15. 15.
    Carmona JP, Venda Oliveira PJ, Lemos LJ, Pedro AM (2017) Improvement of a sandy soil by enzymatic calcium carbonate precipitation. Proc Instit Civil Eng-Geotechn Eng 171(1): 3–15CrossRefGoogle Scholar
  16. 16.
    Mortensen BM, Haber MJ, DeJong JT, Caslake LF, Nelson DC (2011) Effects of environmental factors on microbial induced calcium carbonate precipitation. J Appl Microbiol 111(2):338–349CrossRefGoogle Scholar
  17. 17.
    Davis KJ, Dove PM, De Yoreo JJ (2000) The role of Mg2 + as an impurity in calcite growth. Science 290(5494):1134–1137CrossRefGoogle Scholar
  18. 18.
    Seiler H, Sigel A, Sigel H (eds) (1994) Handbook on metals in clinical and analytical chemistry. CRC PressGoogle Scholar
  19. 19.
    Oomori T, Kitano Y (1985) Catalytic effect of magnesium ions on polymorphic crystallization of calcium carbonate. Bull Coll Sci Univ Ryukyus 39:57–62Google Scholar
  20. 20.
    Cheng L, Shahin M, Cord-Ruwisch R (2014) Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Géotechnique 64(12):1010–1013CrossRefGoogle Scholar
  21. 21.
    Fukue M, Ono SI, Sato Y (2011) Cementation of sands due to microbiologically-induced carbonate precipitation. Soils Found 51(1):83–93CrossRefGoogle Scholar
  22. 22.
    Putra H, Yasuhara H, Kinoshita N, Hirata A (2017) Optimization of enzyme-mediated calcite precipitation as a soil-improvement technique: the effect of aragonite and gypsum on the mechanical properties of treated sand. Crystals 7(2):59CrossRefGoogle Scholar
  23. 23.
    De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136CrossRefGoogle Scholar
  24. 24.
    Blakeley RL, Zerner B (1983) Jack bean urease: the first nickel enzyme. InorganicaChimicaActa 79:11Google Scholar
  25. 25.
    Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571CrossRefGoogle Scholar
  26. 26.
    Boyd V (2012) The effect of calcium and magnesium on carbonate mineral precipitation during reactive transport in a model subsurface pore structureGoogle Scholar
  27. 27.
    Folk RL, Land LS (1975) Mg/Ca ratio and salinity: two controls over crystallization of dolomite. AAPG Bull 59(1):60–68Google Scholar
  28. 28.
    ASTM D2487-17 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), West Conshohocken, PA (2017).  https://doi.org/10.1520/D2487-17
  29. 29.
    ASTM D698-12e2 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kNm/m3)), West Conshohocken, PA (2012).  https://doi.org/10.1520/D0698-12E02
  30. 30.
    ASTM D854-14 Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, West Conshohocken, PA (2014).  https://doi.org/10.1520/D0854-14
  31. 31.
    ASTM D4318-17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA (2017)Google Scholar
  32. 32.
    ASTM D4972-13 Standard Test Method for pH of Soils, ASTM International, West Conshohocken, PA, (2013).  https://doi.org/10.1520/D4972-13
  33. 33.
    Carmona JP, Oliveira PJV, Lemos LJ (2016) Biostabilization of a sandy soil using enzymatic calcium carbonate precipitation. Procedia Eng 143:1301–1308CrossRefGoogle Scholar
  34. 34.
    ASTM D2166/D2166M-16 Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA (2016)Google Scholar
  35. 35.
    Fernandez-Diaz L, Putnis A, Prieto M, Putnis CV (1996) The role of magnesium in the crystallization of calcite and aragonite in a porous medium. J Sediment Res 66(3):482–491Google Scholar
  36. 36.
    Berner RA (1975) The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et CosmochimicaActa 39(4):489–504CrossRefGoogle Scholar
  37. 37.
    Rushdi AI, Pytkowicz RM, Suess E, Chen CT (1992) The effects of magnesium-to-calcium ratios in artificial seawater, at different ionic products, upon the induction time, and the mineralogy of calcium carbonate: a laboratory study. GeologischeRundschau 81(2):571–578Google Scholar
  38. 38.
    Soon NW, Lee LM, Khun TC, Ling HS (2014) Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. J Geotechn Geoenviron Eng 140(5):04014006CrossRefGoogle Scholar
  39. 39.
    De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54(1):57–93CrossRefGoogle Scholar
  40. 40.
    Han M, Zhao Y, Zhao H, Han Z, Yan H, Sun B, ... Liu B (2018) A comparison of amorphous calcium carbonate crystallization in aqueous solutions of MgCl2 and MgSO4: implications for paleo-ocean chemistry. Mineral Petrol 112(2):229–244CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Indian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations