Effect of Magnesium Incorporation in Enzyme-Induced Carbonate Precipitation (EICP) to Improve Shear Strength of Soil

  • Alok ChandraEmail author
  • K. Ravi
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 56)


Enzyme-induced carbonate precipitation (EICP) is a novel, bioinspired soil stabilization technique in which calcium carbonate (\({\text{CaCO}}_{3}\)) crystals are enzymatically precipitated to cement and link the soil grains, thereby improving the shear strength of the soil. This work aims to analyze the effect of incorporating \({\text{Mg}}^{{2+}}\) ions on crystal morphology and their direct influence on the mechanical properties of the soil. A beaker experiment conducted by mixing urea, urease enzyme and \({\text{MgCl}}_{2}\)/\({\text{CaCl}}_{2}\) in different molar ratios revealed that the increase in the \({{{\text{Mg}}^{{2+}}} \mathord{\left/{\vphantom {{{\text{Mg}}^{{2+}}} {{\text{Ca}}^{{2+}}}}} \right. \kern-0pt} {{\text{Ca}}^{2 + } }}\) molar ratio decreases the amount of precipitated mass. The soil specimens for unconfined compressive strength (UCS) test were prepared as per its maximum dry unit weight (\(\gamma_{\text{dmax}}\)), and an optimum solution content (\({\text{w}}_{\text{opt}}\)) consisting of urea, urease enzyme and \({\text{MgCl}}_{2}\)/\({\text{CaCl}}_{2}\) at various \({{{\text{Mg}}^{{2+}} }\mathord{\left/{\vphantom {{{\text{Mg}}^{2+}} {{\text{Ca}}^{2 + } }}} \right. \kern-0pt} {{\text{Ca}}^{2 + } }}\) molar ratio. Field-emission scanning electron microscopy (FESEM) and X-ray powder diffraction (XRD) tests performed on precipitated mass verify the influence of \({\text{Mg}}^{{2+}}\) ions on crystal morphology and the occurrence of other carbonates (dolomite) and polymorphs of \({\text{CaCO}}_{3}\). The results of the UCS tests show that the lower molar ratio of \({\text{Mg}}^{{2+}}\)/\({\text{Ca}}^{2 + }\) can significantly improve the undrained shear strength of the soil.


EICP Precipitation Morphology Shear strength 


  1. 1.
    Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24(5):417–423CrossRefGoogle Scholar
  2. 2.
    van Paassen LA, Ghose R, van der Linden TJ, van der Star WR, van Loosdrecht MC (2010) Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J Geotech Geoenviron Eng 136(12):1721–1728CrossRefGoogle Scholar
  3. 3.
    Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in the natural environment, and their potential in biotechnology: a review. Frontiers Bioeng Biotech 4:4CrossRefGoogle Scholar
  4. 4.
    Nemati M, Voordouw G (2003) Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme Microbial Technol 33(5):635–642CrossRefGoogle Scholar
  5. 5.
    Dilrukshi RAN, Nakashima K, Kawasaki S (2018) Soil improvement using plant-derived urease-induced calcium carbonate precipitation. Soils Found 58(4):894–910CrossRefGoogle Scholar
  6. 6.
    Yasuhara H, Neupane D, Hayashi K, Okamura M (2012) Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils Found 52(3):539–549CrossRefGoogle Scholar
  7. 7.
    Neupane D, Yasuhara H, Kinoshita N, Unno T (2013) Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique. J Geotech Geoenviron Eng 139(12):2201–2211CrossRefGoogle Scholar
  8. 8.
    Putra H, Yasuhara H, Kinoshita N, Neupane D, Lu CW (2016) Effect of magnesium as substitute material in enzyme-mediated calcite precipitation for soil-improvement technique. Frontiers Bioeng Biotech 4:37CrossRefGoogle Scholar
  9. 9.
    Knorr B (2014) Enzyme-induced carbonate precipitation for the mitigation of fugitive dust. Arizona State UniversityGoogle Scholar
  10. 10.
    Hamdan N, Kavazanjian E Jr (2016) Enzyme-induced carbonate mineral precipitation for fugitive dust control. Géotechnique 66(7):546–555CrossRefGoogle Scholar
  11. 11.
    Al-Thawadi SM (2011) Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J Adv Sci Eng Res 1(1):98–114Google Scholar
  12. 12.
    Sondi I, Škapin SD, Salopek-Sondi B (2007) Biomimetic precipitation of nanostructured colloidal calcite particles by enzyme-catalyzed reaction in the presence of magnesium ions. Cryst Growth Des 8(2):435–441CrossRefGoogle Scholar
  13. 13.
    Almajed A, Khodadadi Tirkolaei H, Kavazanjian E Jr (2018) Baseline Investigation on Enzyme-Induced Calcium Carbonate Precipitation. J Geotech Geoenviron Eng 144(11):04018081CrossRefGoogle Scholar
  14. 14.
    Hamdan N, Kavazanjian Jr, E, O’Donnell S (2013) Carbonate cementation via plant derived urease. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering. ParisGoogle Scholar
  15. 15.
    Carmona JP, Venda Oliveira PJ, Lemos LJ, Pedro AM (2017) Improvement of a sandy soil by enzymatic calcium carbonate precipitation. Proc Instit Civil Eng-Geotechn Eng 171(1): 3–15CrossRefGoogle Scholar
  16. 16.
    Mortensen BM, Haber MJ, DeJong JT, Caslake LF, Nelson DC (2011) Effects of environmental factors on microbial induced calcium carbonate precipitation. J Appl Microbiol 111(2):338–349CrossRefGoogle Scholar
  17. 17.
    Davis KJ, Dove PM, De Yoreo JJ (2000) The role of Mg2 + as an impurity in calcite growth. Science 290(5494):1134–1137CrossRefGoogle Scholar
  18. 18.
    Seiler H, Sigel A, Sigel H (eds) (1994) Handbook on metals in clinical and analytical chemistry. CRC PressGoogle Scholar
  19. 19.
    Oomori T, Kitano Y (1985) Catalytic effect of magnesium ions on polymorphic crystallization of calcium carbonate. Bull Coll Sci Univ Ryukyus 39:57–62Google Scholar
  20. 20.
    Cheng L, Shahin M, Cord-Ruwisch R (2014) Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Géotechnique 64(12):1010–1013CrossRefGoogle Scholar
  21. 21.
    Fukue M, Ono SI, Sato Y (2011) Cementation of sands due to microbiologically-induced carbonate precipitation. Soils Found 51(1):83–93CrossRefGoogle Scholar
  22. 22.
    Putra H, Yasuhara H, Kinoshita N, Hirata A (2017) Optimization of enzyme-mediated calcite precipitation as a soil-improvement technique: the effect of aragonite and gypsum on the mechanical properties of treated sand. Crystals 7(2):59CrossRefGoogle Scholar
  23. 23.
    De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136CrossRefGoogle Scholar
  24. 24.
    Blakeley RL, Zerner B (1983) Jack bean urease: the first nickel enzyme. InorganicaChimicaActa 79:11Google Scholar
  25. 25.
    Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571CrossRefGoogle Scholar
  26. 26.
    Boyd V (2012) The effect of calcium and magnesium on carbonate mineral precipitation during reactive transport in a model subsurface pore structureGoogle Scholar
  27. 27.
    Folk RL, Land LS (1975) Mg/Ca ratio and salinity: two controls over crystallization of dolomite. AAPG Bull 59(1):60–68Google Scholar
  28. 28.
    ASTM D2487-17 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), West Conshohocken, PA (2017).
  29. 29.
    ASTM D698-12e2 Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kNm/m3)), West Conshohocken, PA (2012).
  30. 30.
    ASTM D854-14 Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, West Conshohocken, PA (2014).
  31. 31.
    ASTM D4318-17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA (2017)Google Scholar
  32. 32.
    ASTM D4972-13 Standard Test Method for pH of Soils, ASTM International, West Conshohocken, PA, (2013).
  33. 33.
    Carmona JP, Oliveira PJV, Lemos LJ (2016) Biostabilization of a sandy soil using enzymatic calcium carbonate precipitation. Procedia Eng 143:1301–1308CrossRefGoogle Scholar
  34. 34.
    ASTM D2166/D2166M-16 Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA (2016)Google Scholar
  35. 35.
    Fernandez-Diaz L, Putnis A, Prieto M, Putnis CV (1996) The role of magnesium in the crystallization of calcite and aragonite in a porous medium. J Sediment Res 66(3):482–491Google Scholar
  36. 36.
    Berner RA (1975) The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et CosmochimicaActa 39(4):489–504CrossRefGoogle Scholar
  37. 37.
    Rushdi AI, Pytkowicz RM, Suess E, Chen CT (1992) The effects of magnesium-to-calcium ratios in artificial seawater, at different ionic products, upon the induction time, and the mineralogy of calcium carbonate: a laboratory study. GeologischeRundschau 81(2):571–578Google Scholar
  38. 38.
    Soon NW, Lee LM, Khun TC, Ling HS (2014) Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. J Geotechn Geoenviron Eng 140(5):04014006CrossRefGoogle Scholar
  39. 39.
    De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54(1):57–93CrossRefGoogle Scholar
  40. 40.
    Han M, Zhao Y, Zhao H, Han Z, Yan H, Sun B, ... Liu B (2018) A comparison of amorphous calcium carbonate crystallization in aqueous solutions of MgCl2 and MgSO4: implications for paleo-ocean chemistry. Mineral Petrol 112(2):229–244CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Indian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations