Model Based Texture Features

  • Jyotismita ChakiEmail author
  • Nilanjan Dey
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Model-based texture analysis attempts to represent an image texture using the stochastic model and generative image model.


  1. 1.
    Wu Q, Gan Y, Lin B, Zhang Q, Chang H (2015) An active contour model based on fused texture features for image segmentation. Neurocomputing 151:1133–1141CrossRefGoogle Scholar
  2. 2.
    Dharmagunawardhana C, Mahmoodi S, Bennett M, Niranjan M (2016) Rotation invariant texture descriptors based on Gaussian Markov random fields for classification. Pattern Recogn Lett 69:15–21CrossRefGoogle Scholar
  3. 3.
    Reyes A, Rincón MER, García MOM, Santana ERA, Cadena FAA (2017) Robust image segmentation based on superpixels and Gauss-Markov measure fields. In: 2017 Sixteenth mexican international conference on artificial intelligence (MICAI), IEEE, pp 46–52Google Scholar
  4. 4.
    Vasyukov VN, Zaitseva AY (2016) Segmentation of textured images described by hierarchical Gibbs model. In: 2016 11th International forum on strategic technology (IFOST), IEEE, pp 452–455Google Scholar
  5. 5.
    Haindl M, Havlíček M (2017) A compound moving average bidirectional texture function model. In: Multimedia and network information systems. Springer, Cham, pp 89–98Google Scholar
  6. 6.
    Smith MR, Nichols ST, Henkelman RM, Wood ML (1986) Application of autoregressive moving average parametric modeling in magnetic resonance image reconstruction. IEEE Trans Med Imaging 5(3):132–139CrossRefGoogle Scholar
  7. 7.
    Mao J, Jain AK (1992) Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recogn 25(2):173–188CrossRefGoogle Scholar
  8. 8.
    Smolik M, Skala V, Majdisova Z (2018) A new simple, fast and robust total least square error computation in E2: experimental comparison. In: International conference on advanced engineering theory and applications. Springer, Cham, pp 325–334Google Scholar
  9. 9.
    Hedström E, Voigt T, Greil G, Schaeffter T, Nagel E (2017) Automatic T2* determination for quantification of iron load in heart and liver: a comparison between automatic inline maximum likelihood estimate and the truncation and offset methods. Clin Physiol Funct Imaging 37(3):299–304CrossRefGoogle Scholar
  10. 10.
    Cárdenas-Pérez S, Chanona-Pérez JJ, Méndez-Méndez JV, Calderón-Domínguez G, López-Santiago R, Arzate-Vázquez I (2016) Nanoindentation study on apple tissue and isolated cells by atomic force microscopy, image and fractal analysis. Innov Food Sci Emerg Technol 34:234–242CrossRefGoogle Scholar
  11. 11.
    Aimin Y, Shanshan L, Honglei L, Donghao J (2018) Edge extraction of mineralogical phase based on fractal theory. Chaos, Solitons Fractals 117:215–221CrossRefGoogle Scholar
  12. 12.
    Kaewaramsri Y, Woraratpanya K (2015) Improved triangle box-counting method for fractal dimension estimation. In: Recent advances in information and communication technology 2015. Springer, Cham, pp 53-61Google Scholar
  13. 13.
    Gupta A, Vedaldi A, Zisserman A (2016) Synthetic data for text localisation in natural images. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2315–2324Google Scholar
  14. 14.
    Pantic I, Dacic S, Brkic P, Lavrnja I, Jovanovic T, Pantic S, Pekovic S (2015) Discriminatory ability of fractal and grey level co-occurrence matrix methods in structural analysis of hippocampus layers. J Theor Biol 370:151–156CrossRefGoogle Scholar
  15. 15.
    Lillesand T, Kiefer RW, Chipman J (2015) Remote sensing and image interpretation. WileyGoogle Scholar
  16. 16.
    Yin X, Zhou S, Siddique MA (2016) Fractional nonlinear anisotropic diffusion with p-Laplace variation method for image restoration. Multimed Tools Appl 75(8):4505–4526CrossRefGoogle Scholar
  17. 17.
    Zou Q, Wang T, Qian Y (2017) Key point recognition method of bacterial image in water based on complex network. In: 2nd International conference on automatic control and information engineering (ICACIE 2017), Atlantis PressGoogle Scholar
  18. 18.
    Ahuja N, Rosenfeld A (1981) Mosaic models for textures. IEEE Trans Pattern Anal Mach Intell 1:1–11CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Information Technology and EngineeringVellore Institute of TechnologyVelloreIndia
  2. 2.Department of Information TechnologyTechno India College of TechnologyKolkataIndia

Personalised recommendations