Advertisement

Hierarchical Identity-Based Signature over Verifiable Random Function

  • Juan RenEmail author
  • Leyou Zhang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1105)

Abstract

Hierarchical computation makes an important role in constructing identity-based signature (IBS) since it provides a delegation mechanism to IBS, which results in the Hierarchical identity-based signature (HIBS). HIBS has widely potential applications in the large networks. However, the constructions available cannot propose a good trade-off for the private keys and signatures since the size of private keys or signatures depends on the identity depth. In this paper, a new hierarchical computation algorithm is introduced to construct HIBS scheme. The new scheme achieves O(1)-size private keys and signatures, which are independent of identity depth. It is the best trade-off at present. Furthermore, under the \(n+1-weak\) Computational Diffie-Hellman Exponent (\(n+1-wCDH\)) assumption, the scheme is provably secure against existential forgery in the standard model.

Keywords

Hierarchical computation Verifiable random function IBS Constant size private keys Standard model Provable security 

References

  1. 1.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advance in Cryptography, pp. 47–53. ACM, Santa Barbara (1984)Google Scholar
  2. 2.
    Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_14CrossRefGoogle Scholar
  4. 4.
    Gentry, C.: Practical identity-based encryption without random oracles. In: 24th Annual International Conference on The Theory and Applications of Cryptographic Techniques, pp. 445–464. ACM, Saint Petersburg (2006)Google Scholar
  5. 5.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36178-2_34CrossRefGoogle Scholar
  6. 6.
    Waters, B.: Dual key encryption: realizing fully secure IBE and HIBE under simple assumption. In: 29th Annual International Cryptology Conference on Advances in Cryptology, pp. 619–636. ACM, Santa Barbara (2009)Google Scholar
  7. 7.
    Zhang, L., Hu, Y., Wu, Q.: Hierarchical Identity-Based Encryption with Constant size private keys. ETRI J. 34(1), 142–145 (2012)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_26CrossRefGoogle Scholar
  9. 9.
    Cash, D., Hofheinz, D., Kiltz, E.: Bonsai trees, or how to delegate a lattice basis. In: 29th Annual International Conference on Theory and Applications of Cryptographic Techniques, pp. 523–552. ACM, French Riviera (2010)Google Scholar
  10. 10.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28CrossRefzbMATHGoogle Scholar
  11. 11.
    Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Secure hierarchical identity based signature and its application. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 480–494. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30191-2_37CrossRefzbMATHGoogle Scholar
  12. 12.
    Li, J., Zhang, F., Wang, Y.: A new hierarchical ID-based cryptosystem and CCA-secure PKE. In: Zhou, X., et al. (eds.) EUC 2006. LNCS, vol. 4097, pp. 362–371. Springer, Heidelberg (2006).  https://doi.org/10.1007/11807964_37CrossRefGoogle Scholar
  13. 13.
    Au, M., Liu, J., Yuen, T., et al.: Practical Hierarchical Identity Based Encryption and Signature schemes Without Random Oracles. Cryptology ePrint Archive, Report 2006/308 (2006)Google Scholar
  14. 14.
    Yuen, T., Susilo, W., Mu, Y.: How to construct identity-based signatures without the key escrow problem. Int. J. Inf. Secur. 9(4), 297–311 (2010)CrossRefGoogle Scholar
  15. 15.
    Au, M., Liu, J., Yuen, T., et al.: Efficient Hierarchical Identity Based Signature in the Standard Model. Cryptology ePrint Archive, Report 2007/68 (2007)Google Scholar
  16. 16.
    Zhang, L., Hu, Y., Wu, Q.: New construction of short hierarchical ID-based signature in the standard model. Fundamenta Informaticae 90(1–2), 191–201 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Zhang, L., Hu, Y., Wu, Q.: Adaptively secure hierarchical identity-based signature in the standard model. J. China Univ. Posts Telecommun. 17(6), 95–100 (2010)CrossRefGoogle Scholar
  18. 18.
    Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions from identity-based key encapsulation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 554–571. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01001-9_32CrossRefGoogle Scholar
  19. 19.
    Wu, Q., Zhang, L.: New efficient hierarchical identity-based signature. J. Comput. 8(3), 803–810 (2013)CrossRefGoogle Scholar
  20. 20.
    Rückert, M.: Strongly unforgeable signatures and hierarchical identity-based signatures from lattices without random oracles. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 182–200. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12929-2_14CrossRefGoogle Scholar
  21. 21.
    Tian, M., Huang, L., Yang, W.: A new hierarchical identity-based signature scheme from lattices in the standard model. Int. J. Netw. Secur. 14(6), 310–315 (2012)Google Scholar
  22. 22.
    Zhang, X., Xu, C., Jin, C., Xie, R.: Efficient forward secure identity-based shorter signature from lattice. Comput. Electr. Eng. 40(6), 1963–1971 (2014)CrossRefGoogle Scholar
  23. 23.
    Wang, X., Chen, P., Zhou, H., Su, J.: T-HIBE: a trustworthy and secure hierarchical identity-based encryption system. Chin. J. Electron (2015)Google Scholar
  24. 24.
    Li, J., Guo, Y., Yu, Q., Lu, Y., Zhang, Y.: Provably secure identity-based encryption resilient to post-challenge continuous auxiliary inputs leakage. Secur. Commun. Netw. 9(10), 1016–1024 (2016)CrossRefGoogle Scholar
  25. 25.
    Li, J., Teng, M., Zhang, Y., Yu, Q.: A leakage-resilient CCA-secure identity-based encryption scheme. Comput. J. 59(7), 1066–1075 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li, J., Yu, Q., Zhang, Y.: Identity-based broadcast encryption with continuous leakage resilience. Inf. Sci. 429(3), 177–193 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXidian UniversityXi’anChina

Personalised recommendations