Advertisement

Improving File Hierarchy Attribute-Based Encryption Scheme with Multi-authority in Cloud

  • Li KangEmail author
  • Leyou Zhang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1105)

Abstract

With the rapid development of cloud computing technology, users tend to store their data remotely in the cloud to save storage space and enjoy scalable services. However, the cloud servers are not entirely trusted. Ciphertext-policy attribute-based encryption (CP-ABE) is considered as an effective cryptographic approach to prevent the untrusted cloud severs from leaking private data. Since in some areas such as medical and business, the shared data has the feature of multi-level hierarchy, so it makes sense to construct a hierarchy ABE scheme. Recently, Guo et al. proposed a PHR hierarchy multi-authority CP-ABE scheme, which implements global identifier (GID) hiding and hierarchical access control. Unfortunately, we find that the recursive operation (DecryptNode(CTSK, (xy))) defined in their scheme during the decryption phase is doubtable. Based on the analysis, we propose an improving file hierarchy MA-ABE scheme. The scheme preserves the security and privacy of the original scheme but reduces the user’s decryption overhead. In addition, we solve the shortcoming which exists in Guo’s scheme and the other corresponding schemes.

Keywords

File hierarchy Attribute-based encryption Multi-authority Cloud computing 

References

  1. 1.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 457–473. ACM, Aarhus (2005)Google Scholar
  2. 2.
    Goyal, V., Pandey, O., Sahai, A., et al.: Attribute-based encryption for fine-grained access control of encrypted data. In: 13th ACM Conference on Computer and Communications Security, pp. 89–98. ACM, Alexandria (2006)Google Scholar
  3. 3.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, pp. 321–334. IEEE, Berkeley (2007)Google Scholar
  4. 4.
    Chase, M.: Multi-authority attribute based encryption. In: 4th Conference on Theory of Cryptography, pp. 515–534. ACM, Amsterdam (2007)Google Scholar
  5. 5.
    Chase, M., Chow, S.S.M.: Improving privacy and security in multi-authority attribute-based encryption. In: 16th ACM Conference on Computer and Communications Security, pp. 121–130. ACM, Chicago (2009)Google Scholar
  6. 6.
    Qian, H., Li, J., Zhang, Y., et al.: Privacy-preserving personal health record using multi-authority attribute-based encryption with revocation. Int. J. Inf. Secur. 14(6), 487–497 (2015)CrossRefGoogle Scholar
  7. 7.
    Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: 30th Annual International Conference on Theory and Applications of Cryptographic Techniques: Advances in Cryptology, pp. 568–588. ACM, Tallinn (2011)Google Scholar
  8. 8.
    Han, J., Susilo, W., Mu, Y., et al.: Privacy-preserving decentralized key-policy attribute-based encryption. IEEE Trans. Parallel Distrib. Syst. 23(11), 2150–2162 (2012)CrossRefGoogle Scholar
  9. 9.
    Ge, A., Zhang, J., Zhang, R., et al.: Security analysis of a privacy-preserving decentralized key-policy attribute-based encryption scheme. IEEE Trans. Parallel Distrib. Syst. 24(11), 2319–2321 (2013)CrossRefGoogle Scholar
  10. 10.
    Rahulamathavan, Y., Veluru, S., Han, J., et al.: User collusion avoidance scheme for privacy-preserving decentralized key-policy attribute-based encryption. IEEE Trans. Comput. 65(9), 2939–2946 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhang, L., Liang, P., Mu, Y.: Improving privacy-preserving and security for decentralized key-policy attributed-based encryption. IEEE Access 6, 12736–12745 (2018)CrossRefGoogle Scholar
  12. 12.
    Qian, H., Li, J., Zhang, Y.: Privacy-preserving decentralized ciphertext-policy attribute-based encryption with fully hidden access structure. In: Qing, S., Zhou, J., Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 363–372. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02726-5_26CrossRefGoogle Scholar
  13. 13.
    Han, J., Susilo, W., Mu, Y., Zhou, J., Au, M.H.: PPDCP-ABE: privacy-preserving decentralized ciphertext-policy attribute-based encryption. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 73–90. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11212-1_5CrossRefGoogle Scholar
  14. 14.
    Wang, M., Zhang, Z., Chen, C.: Security analysis of a privacy-preserving decentralized ciphertext-policy attribute-based encryption scheme. Concurr. Comput. Practice Exp. 28(4), 1237–1245 (2016)CrossRefGoogle Scholar
  15. 15.
    Yin, H., Zhang, L., Mu, Y.: A novel privacy-preserving decentralized ciphertext-policy attribute-based encryption with anonymous key generation. In: Sun, X., Pan, Z., Bertino, E. (eds.) ICCCS 2018. LNCS, vol. 11065, pp. 435–446. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00012-7_40CrossRefGoogle Scholar
  16. 16.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36178-2_34CrossRefGoogle Scholar
  17. 17.
    Wang, G., Liu, Q., Wu, J.: Hierarchical attribute-based encryption for fine-grained access control in cloud storage services. In: 17th ACM Conference on Computer and Communications Security, pp. 735–737. ACM, Chicago (2010)Google Scholar
  18. 18.
    Wan, Z., Liu, J., Deng, R.H.: HASBE: a hierarchical attribute-based solution for flexible and scalable access control in cloud computing. IEEE Trans. Inf. Forensics Secur. 7(2), 743–754 (2012)CrossRefGoogle Scholar
  19. 19.
    Wang, S., Zhou, J., Liu, J.K., Yu, J., Chen, J., Xie, W.: An efficient file hierarchy attribute-based encryption scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. 11(6), 1265–1277 (2016)CrossRefGoogle Scholar
  20. 20.
    Zhang, L., Wu, Q., Mu, Y., et al.: Privacy-preserving and secure sharing of PHR in the cloud. J. Med. Syst. 40(12), 1–13 (2016)CrossRefGoogle Scholar
  21. 21.
    Sandhia, G.K., Raja, S.V.K., Jansi, K.R.: Multi-authority-based file hierarchy hidden CP-ABE scheme for cloud security. Serv. Oriented Comput. Appl. 12(3–4), 295–303 (2018)CrossRefGoogle Scholar
  22. 22.
    Guo, R., Li, X., Zheng, D., et al.: An attribute-based encryption scheme with multiple authorities on hierarchical personal health record in cloud. J. Supercomput., 1–20 (2018)Google Scholar
  23. 23.
    Jung, T., Li, X.Y., Wan, Z., Wan, M.: Control cloud data access privilege and anonymity with fully anonymous attribute-based encryption. IEEE Trans. Inf. Forensics Secur. 10(1), 190–199 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXidian UniversityXi’anChina

Personalised recommendations