Finite element modeling of the TECCO protection system for rock-fall under impact loading

  • Tran Van DangEmail author
  • Tran Dong
  • Dennis Gross
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 54)


The TECCO protection system consists of the high strength components such as the high tensile steel (HTS) wire mesh and the high strength thread bar. This system is used in the construction for slope stabilization, ground support, landslide protection, especially rock-fall protection. The purpose of this study was to predict the behavior of the wire mesh under impact loading of rock-fall. A finite element has been constructed in order to model the impact between a rock of 0.5 tons and a rectangular wire mesh with high velocity. The mechanical response of the HTS material is assumed as elastic-plastic-isotropic material. Further, the contact behavior within the steel wire mesh and rock-fall are also considered in the model using the Coulomb friction model. Thanks to ABAQUS/Explicit based on finite element method, the impact phenomenon will be clarified. The model may help to reduce the number of experiments with high cost.


Rockfall TECCO protection system finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wartmann, S.; Roth, A. (2005). Experimental and Numerical Modeling of Highly Flexible Rockfall Protection Systems. International Symposium Society for Rock Mechnics and Engineering (CSRME), China.Google Scholar
  2. 2.
    Loganatham, N., Balasubramaniam, A.S., Bergado, D.T.(1993). Deformation analysis of embankments. J. Geotech. Engrg. ASCE. 199(8):1185-1206.Google Scholar
  3. 3.
    Baraniak, P.; Mrozik, M. (2010): Konstrukcjechroniąceprzedspływamigruzowymiorazspa-dającymiodłamkamiskalnymi – testowanie, wymiarowanie, instalacja, użytkowanie – Pro-tection systems against debris flow and rockfalls – testing, dimensioning, installation, ex-ploitation, Konstrukcjestalowe w geotechnice – Steel structures in geotechnics, pages 79–88; Poland.Google Scholar
  4. 4.
    Gerber, W.; Baumann, R.; Wartmann, S.; Buri, H.; Honegger, R.; Kaufmann, R.; Testi, R.; Haller, B.; Toniolo, M. (2000). Guideline for the approval of rockfall protection kits, Swiss Agency for the Environment Forests and Landscape (SAEFEL), Switzerland.Google Scholar
  5. 5.
    Muraishi, H.; Sano, S. (1997). Full Scale Rockfall test of ringnet barrier and components, PWRI, Japan.Google Scholar
  6. 6.
    Wart mann, S.; Gerber, W. (2001): Field Testing of Rockfall Protection Barriers; Comparison between the “Two Most Important Test Methods”, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.Google Scholar
  7. 7.
    EUROCODE 7 (2004). Geotechnical design – Part 1: General rules.Google Scholar
  8. 8.
    Griffiths, D. V.; Lane, P. A. (1999). Slope stability analysis by finite elements, “Geotech-nique”, Vol. 49 (3), pp. 387–403.CrossRefGoogle Scholar
  9. 9.
    CałaFlumRoduner,RüeggerWartmann (2012). TECCO Slope Stabilization System and RUVOLUM Dimensioning Method, ISBN 978-3-033-03296-5, Romanshorn, Switzerland, AGH University of Science and Technology, Faculty of Mining & Geoengineering.Google Scholar
  10. 10.
    Test results (2016). National Research Institute of Mechanical Engineering of Vietnam. No 16-KKC.Google Scholar
  11. 11.
    Abaqus theory manual (2008). DassaultSystèmesSimulia Corp. Providence: Rhode, Island, U.S.A.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Thuyloi UniversityDong Da District, HanoiVietnam
  2. 2.National Civil Engineering UniversityHanoiVietnam
  3. 3.Geobrugg AGRomanshornSwitzerland

Personalised recommendations