Advertisement

Artificial Diet Designing: Its Utility in Management of Defoliating Tea Pests (Lepidoptera: Geometridae)

  • Anjali Km. Prasad
  • Ananda Mukhopadhyay
Chapter
  • 22 Downloads

Abstract

Three geometrid species Biston (=Buzura) suppressaria, Hyposidra talaca, and H. infixaria are notorious defoliating pests of the Terai-Dooars tea plantations in Northeast India. Management of defoliators by conventional pesticide spray is ineffective. To manage these pests in tea plantations, alternative technologies are required. Artificial diets formulated for rearing these lepidopteran pests provide the platform for developing new approaches. The present work provides a practical approach for formulation of artificial (meridic) diet free from tea leaf. The diets have been designed and tested for optimizing the rearing and performance of the pest species. Efficacy of the diets have been estimated and compared with natural tea leaf as food. All the artificial diets recommended for rearing showed better efficacy in supporting the growth and development through generations of the geometrid pest species than that on natural host. The utility, safety, and economy of artificial diet-based rearing in modern pest management research have been discussed.

Keywords

Tea pests Biston (=Buzura) suppressaria Hyposidra talaca Hyposidra infixaria Artificial diet Rearing 

Notes

Acknowledgement

Authors are thankful to the National Tea Research Foundation, Tea Board, Kolkata, for funding the project on Artificial Diet Development and Department of Zoology (UGC-SAP and DST-FIST supported) of North Bengal University for providing the necessary laboratory facilities. Authors are also thankful to the whole team of researchers of the Entomology Research Unit, Department of Zoology, NBU, for their constant support and help. Authors extend heartfelt thanks to the managers of all the tea plantations visited during the course of this study for cooperation. The datasets in the tables and photographs are of the authors.

References

  1. Adati T, Nakamura S, Tamò M, Kawazu K (2004) Effect of temperature on development and survival of the legume pod borer, Maruca vitrata (Fabricius) (Lepidoptera: Pyralidae) reared on a semi-synthetic diet. Appl Entomol Zool 39(1):139–145CrossRefGoogle Scholar
  2. Ahmad SA, Hopkins TL (1992) Phenol 3-glucosyltransferase and -glucosidase activities in the tobacco hornworm larvae Manduca Sexta (L.): properties and tissue location. Arch Insect Biochem Physiol 21:207–224CrossRefGoogle Scholar
  3. Anonymous (2015) Plant Protection Code (PPC). Tea Board of India, Ministry of Commerce and Industry, Govt. of India, p 140Google Scholar
  4. Bailey CG (1976) A quantitative study of consumption and utilization of various diets in the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Can Entomol 108(12):1319–1326CrossRefGoogle Scholar
  5. Basu Majumdar A, Ghosh P (2004) Hyposidra talaca (Walker) a destructive pest of tea in Dooars tea plantations. Two Bud 51:49–51Google Scholar
  6. Basu Majumdar A, Pathak SK, Hath TK (2012) Evaluation of some biorational insecticides against the looper complex, Hyposidra spp. in tea plantations of Dooars, West Bengal. J Biopest 5(1):91Google Scholar
  7. Castañé C, Zapata R (2005) Rearing the predatory bug Macrolophus caliginosus on a meat-based diet. Biol Control 34(1):66–72CrossRefGoogle Scholar
  8. Chen YZ, Lin L, Wang CW, Yeh CC, Hwang SY (2004) Response of two Pieris (Lepidoptera: Pieridae) species to fertilization of a host plant. Zool Stud 43:778–786Google Scholar
  9. Cohen AC (2001) Formalizing insect rearing and artificial diet technology. Am Entomol 47(4):198–206CrossRefGoogle Scholar
  10. Cohen AC (2004) Insect diets, science and technology. CRC Press LLC, Boca Raton, p 9Google Scholar
  11. Coudron TA, Wittmeyer J, Kim Y (2002) Life history and cost analysis for continuous rearing of Podisus maculiventris (Heteroptera: Pentatomidae) on a zoo phytophagous artificial diet. J Econ Entomol 95:1159–1168CrossRefGoogle Scholar
  12. Cresswell JE, Merritt SZ, Martin MM (1992) The effect of dietary nicotine on the allocation of assimilated food to energy metabolism and growth in fourth instar larvae of the southern armyworm, Spodoptera eridania (Lepidoptera: Noctuidae). Oecologia 89:449–453CrossRefGoogle Scholar
  13. Dadd RH (1985) Nutrition: organisms. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. National Academy Press/Pergamon, Oxford/Washington, DCGoogle Scholar
  14. Das GM (1965) Pests of tea in north-East India and their control. Tea Research Association, Calcutta, p 115Google Scholar
  15. Das S (2015) A study on variability of isozymes in population of major Lepidoptera and mite pests of tea from Darjeeling foothills and adjoining Terai regions. PhD Thesis, University of North BengalGoogle Scholar
  16. Das S, Mukhopadhyay A (2008) Host based variation in life cycle traits and general esterase level of the tea looper, Hyposidra talaca (Walker) (Lepidoptera: Geometridae). J Plant Crop 36(3):457–459Google Scholar
  17. Das S, Mukhopadhyay A (2014) Host-based life cycle traits and detoxification enzymes of major looper pests (Lepidoptera: Geometridae) of tea from Darjeeling Terai, India. Phytoparasitica 42:275–283CrossRefGoogle Scholar
  18. Das S, Sarker M, De D, Mukhopadhyay A (2006) Exploring the potential of insect enemies in controlling red slug and looper caterpillar, two major lepidopteran defoliators of tea from Darjeeling foothill regions. J Plant Crop 34(3):432–434Google Scholar
  19. Das S, Mukhopadhyay A, Roy S, Biswa R (2010) Emerging looper pests of tea crop from sub-Himalayan West Bengal, India. Resistant Pest Manage Newsl 20(1):8–13Google Scholar
  20. De D, Sarker M, Das S, Mukhopadhyay A (2006) Evaluation of killing efficacy of the polyhedrosis virus isolated from Buzura suppressaria Guen. (Lepidoptera: Geometridae), a defoliating pest of tea from Darjeeling foothills. J Plant Crop 34(3):420–422Google Scholar
  21. De D, Sarker M, Mukhopadhyay A (2007) A report on the naturally occurring pathogenic bacteria of the lepidopteran tea pest, Buzura suppressaria (Lepidoptera: Geometridae) from Darjeeling foothills and plains. J Plant Crop 35(2):122–124Google Scholar
  22. Dosdall LM, Ulmer BJ (2004) Feeding, development, and oviposition of bertha armyworm (Lepidoptera: Noctuidae) on different host plant species. Environ Entomol 33:756–764CrossRefGoogle Scholar
  23. Dougherty EC (1959) Introduction to axenic culture of invertebrate metazoan: a goal. Ann N Y Acad Sci 77:27–54CrossRefGoogle Scholar
  24. Felland CM, Hull LA (1992) Integrated ground cover management. An entomological perspective. Pennsylvania Fruits News 72:91–94Google Scholar
  25. Ghosh B, Mukhopadhyay A, Das A, Bahadur M (2015) Restriction endonuclease fragment analysis of Hyposidra talaca nucleopolyhedrovirus genome. Int J Curr Res Acad Rev 3(8):81–87Google Scholar
  26. Gould J, Venette R, Winograd D (2005) Effect of temperature on development and population parameters of Copitarsia decolora (Lepidoptera: Noctuidae). Environ Entomol 34(3):548–556CrossRefGoogle Scholar
  27. Gupta RK, Raina JC, Monobrullah MD (2007) Optimization of in vivo production of nucleopolyhedrovirus in homologous host larvae of Helicoverpa armigera. J Entomol 4:279–288CrossRefGoogle Scholar
  28. Gurusubramanian G, Rahman A, Sarmah M, Roy S, Bora S (2008) Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures. J Environ Biol 29(6):813–826PubMedPubMedCentralGoogle Scholar
  29. Han L, Li S, Liu P, Peng Y, Hou M (2012) New artificial diet for continuous rearing of Chilo suppressalis (Lepidoptera: Crambidae). Ann Entomol Soc Am 105(2):253–258CrossRefGoogle Scholar
  30. Hirai K (1976) A simple artificial diet for mass rearing of the armyworm, Leucania separata Walker (Lepidoptera: Noctuidae). Appl Entomol Zool 11(4):278–283CrossRefGoogle Scholar
  31. Hou RF, Hsiao ML (1986) An improved diet for rearing the diamondback moth, Plutella xylostella and its requirements for fatty acids. Chin J Entomol 6:31–37Google Scholar
  32. Kalia V, Chaudhari S, Gujar GT (2001) Optimization of production of nucleopolyhedrovirus of Helicoverpa armigera throughout larval stages. Phytoparasitica 29(1):23CrossRefGoogle Scholar
  33. Karban R, Agrawal AA (2002) Herbivore offense. Annu Rev Ecol Syst 33(1):641–664CrossRefGoogle Scholar
  34. Kim S, Hong S, Park H, Lee Y, Park K, Choi W, Kim N (2014) An artificial diet for the swallowtail butterfly, Papilio xuthus. Int J Ind Entomol 28(1):1–4Google Scholar
  35. Kumar CS, Sathiah N, Rabindra RJ (2005) Optimizing the time of harvest of nucleopolyhedrovirus infected Spodoptera litura (Fabricius) larvae under in vivo production systems. Curr Sci 88:1682–1684Google Scholar
  36. Leckie BM, Ownley BH, Pereira RM, Klingeman WE, Jones CJ, Gwinn KD (2008) Mycelia and spent fermentation broth of Beauveria bassiana incorporated into synthetic diets affect mortality, growth and development of larval Helicoverpa zea (Lepidoptera: Noctuidae). Biocontrol Sci Tech 18(7):697–710CrossRefGoogle Scholar
  37. Lyon RL, Brown SJ (1970) Contact toxicity of insecticides applied to fall cankerworm reared on artificial diet. J Econ Entomol 63(6):1970–1971CrossRefGoogle Scholar
  38. Ma DL, Gordh G, Zalucki MP (2000) Biological effects of azadirachtin on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) fed on cotton and artificial diet. Aust J Entomol 39(4):301–304CrossRefGoogle Scholar
  39. Markwick NP, Laing WA, Christeller JT, McHenry JZ, Newton MR (1998) Overproduction of digestive enzymes compensates for inhibitory effects of protease and α-amylase inhibitors fed to three species of leafrollers (Lepidoptera: Tortricidae). J Econ Entomol 91(6):1265–1276CrossRefGoogle Scholar
  40. McKinley DJ (1971) An introduction to the use and preparation of artificial diets with special emphasis on diets for phytophagous Lepidoptera. PANS Pest Articles News Summaries 17(4):421–424CrossRefGoogle Scholar
  41. Michaud JP (2005) On the assessment of prey suitability in aphidophagous Coccinellidae. Eur J Entomol 102(3):385CrossRefGoogle Scholar
  42. Mujiono K, Witjaksono W, Putra NS (2015) The sex pheromone content of the Spodoptera exigua (Hubner) under artificial and natural diets. Int J Sci Eng 8(2):146–150Google Scholar
  43. Mukhopadhyay A, De D, Sarker M, Bambawale OM (2007) New record of Baculovirus in Buzura suppressaria Guen. In India. Nat Prod Radiance 6(5):375–376Google Scholar
  44. Mukhopadhyay A, De D, Khewa S (2010) Exploring the biocontrol potential of naturally occurring bacterial and viral entomopathogens of defoliating lepidopteran pests of tea plantations. J Biopest 3(1):117Google Scholar
  45. Mukhopadhyay A, Khewa (S)S, De D (2011) Characteristics and virulence of NPV isolated from Hyposidra talaca. Int J Trop Insect Sci 31(1–2):13–19CrossRefGoogle Scholar
  46. Nair N, Sekh K, Debnath MR, Dhar PP, Somchoudhury AK (2008) Biology of Hyposidra infixaria walk. (Lepidoptera: Geometridae), a resurgent looper pest of tea. J Entomol Res 32(1):67–70Google Scholar
  47. Nunes MLS, Figueiredo LL, da Silva Andrade R, Rezende JM, Czepak C, Albernaz-Godinho KC (2017) Biology of Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae) rearing on artificial or natural diet in laboratory. J Entomol 14(4):168–175CrossRefGoogle Scholar
  48. Paraiso O, Smith TR, Hight SD, Davis BJ (2014) Rearing a native Cactus moth, Melitara prodenialis (Lepidoptera: Pyralidae), on artificial diet and Opuntia Cladodes: preliminary comparisons. Fla Entomol 97(3):1232–1236CrossRefGoogle Scholar
  49. Parra JR (2012) The evolution of artificial diets and their interactions in science and technology. In: Insect bioecology and nutrition for integrated pest management. CRC Press, Boca Raton, pp 51–92CrossRefGoogle Scholar
  50. Pedda Kasim D, Krishna MSR, Suneetha P, Srideepthi R, Sahithya UL (2018) Survival and development of maize stem borer Chilo Partellus (Swinhoe) Lepidoptera: Crambidae on artificial diet. Acta Ecol Sin 38(2):144–147CrossRefGoogle Scholar
  51. Perez CJ, Shelton AM (1997) Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis Berliner in Central America. J Econ Entomol 90(1):87–93CrossRefGoogle Scholar
  52. Prasad AK, Mukhopadhyay A (2013) A technique to measure the loss in tea crop by the defoliating pest (Hyposidra talaca Walker) on the basis of dry mass and leaf area parameters. Survival 25(1.97):1–97Google Scholar
  53. Prasad AK, Mukhopadhyay A (2015a) First attempt of complete rearing of tea looper, Biston (=Buzura) suppressaria, on artificial and natural diet. Proc Natl Acad Sci India Sect B Biol Sci.  https://doi.org/10.1007/s40011-015-0532-y
  54. Prasad AK, Mukhopadhyay A (2015b) Fitness traits of the tea defoliator, Hyposidra talaca (Walker, 1860) (Lepidoptera: Geometridae) on natural and artificial diets in relation to gut enzymes and nutritional deficiencies. Ann Soc Entomol France.  https://doi.org/10.1080/00379271.2015.1061230
  55. Prasad AK, Mukhopadhyay A (2016) Growth, nutritional indices and digestive enzymes of Hyposidra infixaria Walker (Lepidoptera: Geometridae) on artificial and natural (tea) diets. J Asia Pac Entomol 19(1):167–172CrossRefGoogle Scholar
  56. Rizvi SZM, Raman A (2015) Epiphyas postvittana (Lepidoptera: Tortricidae)—Botrytis cinerea (Helotiales: Sclerotiniaceae)—Vitis vinifera (Vitales: Vitaceae) interaction: the role of B. cinerea on the development of E. postvittana in synthetic nutritional media. J Econ Entomol 108(4):1646–1654CrossRefGoogle Scholar
  57. Robert SC, Luke Q, Wharton RA (2009) Insects reared from the wild fruits of Kenya. J East Afr Nat Hist 98(1):11–66CrossRefGoogle Scholar
  58. Schoonhoven LM, Jermy T, Van Loon JJA (1998) Insect-plant biology: from physiology to evolution. Stanley Thornes, CheltenhamCrossRefGoogle Scholar
  59. Shen TC, Tseng CM, Guan LC, Hwang SY (2006) Performance of Lymantria xylina (Lepidoptera: Lymantriidae) on artificial and host plant diets. J Econ Entomol 99(3):714–721CrossRefGoogle Scholar
  60. Singh P (1977) Artificial diet for insects, mites and spiders. IFI Plenum, New YorkCrossRefGoogle Scholar
  61. Slansky F Jr, Wheeler GS (1992) Feeding and growth responses of laboratory and field strains of velvetbean caterpillars (Lepidoptera: Noctuidae) to food nutrient level and allelochemicals. J Econ Entomol 85(5):1717–1730CrossRefGoogle Scholar
  62. Somchoudhury AK, Nair N, Tudu B, Debnath MR, Dey PK (2010) Studies on the alternate host plants of Hyposidra infixaria walk.(Lepidoptera: Geometridae), a resurgent looper pest of tea. J Entomol Res 34(3):271–274Google Scholar
  63. Somchoudhury AK, Nair N, Tudu B, Debnath MR, Dhar PP (2011) Effects of some common natural enemies and neem formulations on Hyposidra infixaria walk.(lepidoptera: Geometridae), a resurgent looper pest of tea. J Entomol Res 35(1):9–13Google Scholar
  64. Tao JIN, Lin YY, Jin QA, Wen HB, Peng ZQ (2018) Design and selection of an artificial diet for the coconut black-headed caterpillar, Opisina arenosella, based on orthogonal array analysis. J Integr Agric 17(12):2758–2767CrossRefGoogle Scholar
  65. Wang P, Lu PF, Zheng XL, Chen LZ, Lei CL, Wang XP (2013) New artificial diet for continuous rearing of the bean pod borer, Maruca vitrata. J Insect Sci 13(1):121PubMedPubMedCentralGoogle Scholar
  66. Wheeler GS, Slansky F Jr, Yu SJ (2001) Food consumption, utilization and detoxification enzyme activity of larvae of three polyphagous noctuid moth species when fed the botanical insecticide rotenone. Entomol Exp Appl 98(2):225–239CrossRefGoogle Scholar
  67. Zhou SY, Kanglai DH (1999) Studies on mass rearing of Asian corn borer: development of a satisfactory non agar semi-artificial diet and its use. J Plant Prot 4:1999–1904Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Anjali Km. Prasad
    • 1
  • Ananda Mukhopadhyay
    • 2
  1. 1.Entomology Research UnitDepartment of Zoology, University of North BengalDarjeelingIndia
  2. 2.Department of ZoologyUniversity of North BengalDarjeelingIndia

Personalised recommendations